Advertisement

Scientometrics

, Volume 115, Issue 2, pp 893–911 | Cite as

The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience

  • Yashuang Qi
  • Na Zhu
  • Yujia Zhai
  • Ying Ding
Article
  • 334 Downloads

Abstract

Patent and scientific literature are the fundamental sources of innovation in knowledge creation and transfer activities. Establishing and understanding the complex relationships between them can help scientists and stakeholders to predict and promote the innovation process. In this paper, we consider the domain of nanoscience, using a large scale collection of patents and scientific literature to find evolution patterns and distinctive keywords of each topic in a particular period. By extracting the semantic-level topics from a dataset of nearly 810,000 scientific literature from Web of Science and 160,000 patents from Derwent, the results reveal that the degree of topic popularity for both innovative platforms shows a totally different situation during the last 20 years from 1995 to 2015. In addition, the top keywords of patents and scientific literature, representing the topic content of concern, have changed respectively as time went on. Not only our analysis can be used for confirming existing topics in nanoscience, but it also gives new views on the relationship between scientific literature and patents.

Keywords

Nanoscience Lead–lag analysis Patent Scientific literature 

Mathematics Subject Classification

68T10 

JEL Classification

D830 

Notes

Acknowledgements

This work is supported in part by Major Projects of National Social Science Foundation of China (No. 14ZDA063).

References

  1. Bassecoulard, E., & Zitt, M. (2004). Patents and publications. In Handbook of quantitative science and technology research (pp. 665–694). Netherlands: Springer.Google Scholar
  2. Bhattacharya, S., Kretschmer, H., & Meyer, M. (2003). Characterizing intellectual spaces between science and technology. Scientometrics, 58(2), 369–390.CrossRefGoogle Scholar
  3. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.zbMATHGoogle Scholar
  4. Branstetter, L., & Ogura, Y. (2005). Is academic science driving a surge in industrial innovation? Evidence from patent citations (No. w11561). National Bureau of Economic Research.Google Scholar
  5. Caraça, J., Lundvall, B. Å., & Mendonça, S. (2009). The changing role of science in the innovation process: From Queen to Cinderella? Technological Forecasting and Social Change, 76(6), 861–867.CrossRefGoogle Scholar
  6. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. London: Routledge.Google Scholar
  7. Di Stefano, G., Gambardella, A., & Verona, G. (2012). Technology push and demand pull perspectives in innovation studies: Current findings and future research directions. Research Policy, 41(8), 1283–1295.CrossRefGoogle Scholar
  8. Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13(4), 283.MathSciNetCrossRefGoogle Scholar
  9. Gibbons, M., & Johnston, R. (1974). The roles of science in technological innovation. Research Policy, 3(3), 220–242.CrossRefGoogle Scholar
  10. Glänzel, W., & Meyer, M. (2003). Patents cited in the scientific literature: An exploratory study of ‘reverse’ citation relations. Scientometrics, 58(2), 415–428.CrossRefGoogle Scholar
  11. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1(1)), 5228–5235.CrossRefGoogle Scholar
  12. Guan, J., & Zhao, Q. (2013). The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals. Technological Forecasting & Social Change, 80(7), 1271–1286.CrossRefGoogle Scholar
  13. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.CrossRefGoogle Scholar
  14. Hassan, M. H. (2005). Small things and big changes in the developing world. Science, 309(5731), 65–66.CrossRefGoogle Scholar
  15. Hsu, C.-W., Lien, Y.-C., & Chen, H. (2015). R&D internationalization and innovation performance. International Business Review, 24(2), 187–195.CrossRefGoogle Scholar
  16. Hu, D., Chen, H., Huang, Z., & Roco, M. C. (2007). Longitudinal study on patent citations to academic research articles in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(4), 529–542.CrossRefGoogle Scholar
  17. Hu, B., Dong, X., Zhang, C., Bowman, T. D., Ding, Y., Milojević, S., et al. (2015). A lead–lag analysis of the topic evolution patterns for preprints and publications. Journal of the Association for Information Science and Technology, 66(12), 2643–2656.CrossRefGoogle Scholar
  18. Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: A review of social science studies and search strategies. The Journal of Technology Transfer, 36(2), 145–172.CrossRefGoogle Scholar
  19. Huang, M.-H., Yang, H.-W., & Chen, D.-Z. (2015). Industry–academia collaboration in fuel cells: A perspective from paper and patent analysis. Scientometrics, 105(2), 1301–1318.CrossRefGoogle Scholar
  20. Hullmann, A. (2008). European activities in the field of ethical, legal and social aspects (ELSA) and governance of nanotechnology (p. 1). Brussels: European Commission.Google Scholar
  21. Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. Scientometrics, 58(3), 507–527.CrossRefGoogle Scholar
  22. Igami, M., & Okazaki, T. (2007). Capturing nanotechnology’s current state of development via analysis of patents. OECD science, technology and industry working papers. Google Scholar
  23. Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Technical structure of the global nanoscience and nanotechnology literature. Journal of Nanoparticle Research, 9(5), 701–724.CrossRefGoogle Scholar
  24. Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.CrossRefGoogle Scholar
  25. Li, X., Hu, D., Dang, Y., Chen, H., Roco, M. C., Larson, C. A., et al. (2009). Nano mapper: An Internet knowledge mapping system for nanotechnology development. Journal of Nanoparticle Research, 11(3), 529–552.CrossRefGoogle Scholar
  26. Li, X., Lin, Y., Chen, H., & Roco, M. C. (2007). Worldwide nanotechnology development: A comparative study of USPTO, EPO, and JPO patents (1976–2004). Journal of Nanoparticle Research, 9(6), 977–1002.CrossRefGoogle Scholar
  27. Logothetidis, S. (Ed.). (2012). Nanostructured materials and their applications. New York: Springer.Google Scholar
  28. Maine, E., Thomas, V. J., Bliemel, M., Murira, A., & Utterback, J. (2014). The emergence of the nanobiotechnology industry. Nature Nanotechnology, 9(1), 2–5.CrossRefGoogle Scholar
  29. Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strategic Management Journal, 31(6), 602–628.Google Scholar
  30. Mansfield, E. (1991). Academic research and industrial innovation. Research Policy, 20(1), 1–12.CrossRefGoogle Scholar
  31. McINTYRE, R. A. (2012). Common nano-materials and their use in real world applications. Science Progress, 95(1), 1–22.CrossRefGoogle Scholar
  32. Mei, Q., & Zhai, C. (2005, August). Discovering evolutionary theme patterns from text: An exploration of temporal text mining. In Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining (pp. 198–207). ACM.Google Scholar
  33. Meyer, M. (2000a). Does science push technology? Patents citing scientific literature. Research Policy, 29(3), 409–434.CrossRefGoogle Scholar
  34. Meyer, M. (2000b). What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 49(1), 93–123.CrossRefGoogle Scholar
  35. Meyer, M. (2002). Tracing knowledge flows in innovation systems. Scientometrics, 54(2), 193–212.CrossRefGoogle Scholar
  36. Meyer, M. (2006). Knowledge integrators or weak links? an exploratory comparison of patenting researchers with their non-inventing peers in nano-science and technology. Scientometrics, 68(3), 545–560.CrossRefGoogle Scholar
  37. Nallapati, R., Shi, X., McFarland, D. A., Leskovec, J., & Jurafsky, D. (2011, July). LeadLag LDA: Estimating topic specific leads and lags of information outlets. In ICWSM. Google Scholar
  38. Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.CrossRefGoogle Scholar
  39. National Research Council. (2012). Rising to the challenge: US innovation policy for the global economy. Washington DC: National Academies Press.Google Scholar
  40. Nemet, G. F. (2009). Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 38(5), 700–709.CrossRefGoogle Scholar
  41. Nightingale, P. (1998). A cognitive model of innovation. Research policy, 27(7), 689–709.CrossRefGoogle Scholar
  42. Ozcan, S., & Islam, N. (2017). Patent information retrieval: Approaching a method and analysing nanotechnology patent collaborations. Scientometrics, 111(2), 1–30.CrossRefGoogle Scholar
  43. Ozin, G. A., & Cademartiri, L. (2009). Nanochemistry: What is next? Small (Weinheim an der Bergstrasse, Germany), 5(11), 1240–1244.CrossRefGoogle Scholar
  44. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347.CrossRefGoogle Scholar
  45. Paull, R., Wolfe, J., Hébert, P., & Sinkula, M. (2003). Investing in nanotechnology. Nature Biotechnology, 21(10), 1144–1147.CrossRefGoogle Scholar
  46. Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.CrossRefGoogle Scholar
  47. Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks (pp. 45–50).Google Scholar
  48. Rip, A. (1992). Science and technology as dancing partners. In Technological development and science in the industrial age (pp. 231–270). Dordrecht: Springer.CrossRefGoogle Scholar
  49. Roco, M. C., & Bainbridge, W. S. (2005). Societal implications of nanoscience and nanotechnology: Maximizing human benefit. Journal of Nanoparticle Research, 7(1), 1–13.CrossRefGoogle Scholar
  50. Roco, M. C., Mirkin, C. A., & Hersam, M. C. (2011). Nanotechnology research directions for societal needs in 2020: Summary of international study. Journal of Nanoparticle Research, 13(3), 897–919.CrossRefGoogle Scholar
  51. Sampat, B. N., & Ziedonis, A. A. (2004). Patent citations and the economic value of patents. In Handbook of quantitative science and technology research (pp. 277–298). Netherlands: Springer.Google Scholar
  52. Selin, C. (2007). Expectations and the emergence of nanotechnology. Science, Technology and Human Values, 32(2), 196–220.CrossRefGoogle Scholar
  53. Shaparenko, B., Caruana, R., Gehrke, J., & Joachims, T. (2005). Identifying temporal patterns and key players in document collections. In Proceedings of the IEEE ICDM workshop on temporal data mining: Algorithms, theory and applications (TDM-05) (pp. 165–174).Google Scholar
  54. Shi, X., Nallapati, R., Leskovec, J., McFarland, D., & Jurafsky, D. (2010). Who leads whom: Topical lead–lag analysis across corpora. In NIPS workshop. Google Scholar
  55. Stevens, S. Y., Sutherland, L. M., & Krajcik, J. S. (2009). The big ideas of nanoscale science and engineering. NSTA press.Google Scholar
  56. Swan, R., & Jensen, D. (2000, August). Timemines: Constructing timelines with statistical models of word usage. In KDD-2000 workshop on text mining (pp. 73–80).Google Scholar
  57. Tanaka, M. (2013). Toward a proposed ontology for nanoscience. In Proceedings of the Annual Conference of CAIS/Actes du congrès annuel de l'ACSI, October.Google Scholar
  58. Tussen, R., Buter, R., & Van Leeuwen, T. (2000). Technological relevance of science: An assessment of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.CrossRefGoogle Scholar
  59. Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.CrossRefGoogle Scholar
  60. Wohlleben, W., Kuhlbusch, T. A., Schnekenburger, J., & Lehr, C. M. (Eds.). (2014). Safety of nanomaterials along their lifecycle: Release, exposure, and human hazards. Boca Raton: CRC Press.Google Scholar
  61. Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1671–1681.CrossRefGoogle Scholar
  62. Zhang, G., Feng, Y., Yu, G., Liu, L., & Hao, Y. (2017). Analyzing the time delay between scientific research and technology patents based on the citation distribution model. Scientometrics, 111, 1–20.CrossRefGoogle Scholar
  63. Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing & Management, 42(6), 1513–1531.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Information Resource Management, School of BusinessNankai UniversityTianjinChina
  2. 2.Department of Information Resource Management, School of ManagementTianjin Normal UniversityTianjinChina
  3. 3.School of Informatics and ComputingIndiana UniversityBloomingtonUSA

Personalised recommendations