, Volume 115, Issue 2, pp 731–748 | Cite as

Quantifying the internationality and multidisciplinarity of authors and journals using ecological statistics

  • Michael CalverEmail author
  • Kate Bryant
  • Grant Wardell-Johnson


Authors or journals often claim internationality or multidisciplinarity based on assertion or qualitative evidence, while scientometric studies employ sophisticated analyses or software beyond the resources of occasional users to assess these concepts. This paper demonstrates how statistics used to describe ecological communities can be applied to bibliometric data to quantify internationality or multidisciplinarity for individuals and journals, enabling tests of statistical significance using graphical user interface freeware accessible to even occasional users. Margalef Richness, diversity and evenness or equitability can be calculated to indicate whether papers or citations come predominantly from a small group of countries or disciplines, or are more widely distributed. Tests of statistical significance for differences in Margalef richness, diversity or evenness between authors or journals enable testing of diverse hypotheses including, for example: differences in internationality or multidisciplinarity between authors or between journals; or changes over time in these variables for authors or journals (perhaps in response to career changes or changes in editorial policy). Quantifying internationality and multidisciplinarity in an accessible way for many potential users, with the possibility of statistical hypothesis testing, is a significant advance over assertion and qualitative description on the one hand or conceptually and practically complex analysis on the other.


Internationality Multidisciplinarity Bibliometrics Citation studies Cited reference search Scopus Web of science 

Mathematics Subject Classification


JEL Classification




We thank two anonymous reviewers for detailed, helpful critiques on earlier versions of the paper.

Supplementary material

11192_2018_2692_MOESM1_ESM.xlsx (39 kb)
Supplementary Table 1 The data for author evaluations (XLSX 38 kb)
11192_2018_2692_MOESM2_ESM.xlsx (39 kb)
Supplementary Table 2 The data for journal evaluations (XLSX 38 kb)


  1. Appio, F. P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis. Scientometrics, 101, 623–661.CrossRefGoogle Scholar
  2. Appio, F. P., Martini, A., Massa, S., & Testa, S. (2016). Unveiling the intellectual origins of social media-based innovation: insights from a bibliometric approach. Scientometrics, 108, 355–388.CrossRefGoogle Scholar
  3. Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 different scientific impact measures. PLoS ONE, 4(6), e6022. Scholar
  4. Buela-Casal, G., Perakakis, P., Taylor, M., & Checa, P. (2006). Measuring Internationality: reflections and perspectives on academic journals. Scientometrics, 67(1), 45–65.CrossRefGoogle Scholar
  5. Calver, M. C. (2015). Please don’t aim for a highly cited paper. Australian Universities’ Review, 57, 45–51.Google Scholar
  6. Calver, M. C., Beatty, S. J., Bryant, K. A., Dickman, C. R., Ebner, B. C., & Morgan, D. L. (2013). Users beware: implications of database errors when assessing the individual research records of ecologists and conservation biologists. Pacific Conservation Biology, 19, 320–330.CrossRefGoogle Scholar
  7. Calver, M. C., & Bryant, K. A. (2008). Pacific Conservation Biology: an authorship and citation analysis. Pacific Conservation Biology, 14(4), 285–303.CrossRefGoogle Scholar
  8. Calver, M. C., Wardell-Johnson, G., Bradley, S., & Taplin, R. (2010). What makes a journal international? A case study using conservation biology journals. Scientometrics, 85(2), 387–400.CrossRefGoogle Scholar
  9. Choi, B. C. K., & Pak, A. W. P. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine, 29, 351–364.Google Scholar
  10. Ding, Zuo-qi, Zheng, Xiao-nan, & Wu, Xia-ming. (2012). Strategies for expanding the international influences of academic journals: An example from Chinese pharmaceutical journals. Serials Review, 38(2), 80–85.CrossRefGoogle Scholar
  11. Elsevier (2016). Scopus content coverage guide. Updated January 2016. Accessed 3 April 2017.
  12. Fernández-Quijada, D. (2011). Appraising internationality in Spanish communication journals. Journal of Scholarly Publishing, 43, 90–109.CrossRefGoogle Scholar
  13. García-Pérez, M. A. (2010). Accuracy and completeness of publication and citation records in the Web of Science, PsycINFO, and Google scholar: A case study for the computation of h indices in psychology. Journal of the American Society for Information Science and Technology, 61(10), 2070–2085.CrossRefGoogle Scholar
  14. Gazni, A., & Ghaseminik, Z. (2016). Internationalization of scientific publishing over time: Analysing publishers and fields differences. Learned Publishing, 29, 103–111.CrossRefGoogle Scholar
  15. Gingras, Y. (2014). Criteria for evaluating indicators. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 109–126). Massachusetts: MIT Press.Google Scholar
  16. González-Alcaido, G. (2014). Scientometric portrait of biochemist Santiago Grisolía: publication productivity, collaboration patterns, and citation analysis. Research Evaluation, 23, 150–165.CrossRefGoogle Scholar
  17. Hammer, Ø. (2013). PAST. PAleontological STatistics Version 3.0 Reference Manual.
  18. Hammer, Ø., & Harper, D. (2006). Paleontological data analysis. Hoboken: Blackwell Publishing.Google Scholar
  19. Hammer, Ø., Harper, D.A.T. & Ryan, D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica 4(1), 9 pp, available at: Accessed 28 December 2013.
  20. Ho, D. N., Choi, K. Y., & Lee, S.-J. (2013). Bibliometric analysis of Theranostics: two years in the making. Theranostics, 3, 527–531.CrossRefGoogle Scholar
  21. Jacsó, P. (2005). As we may search—comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Current Science, 89(9), 1537–1547.Google Scholar
  22. Jacsó, P. (2007). Software issues related to cited references. Online Information Review, 31(6), 892–905.CrossRefGoogle Scholar
  23. Karlovčec, M., & Mladenić, D. (2015). Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring. Scientometrics, 102, 433–454.CrossRefGoogle Scholar
  24. Krebs, C. J. (1999). Ecological methodology. Menlo Park, California: Addison-Wesley Longman.Google Scholar
  25. Larivière, V., & Gingras, Y. (2014). Measuring interdisciplinarity. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 187–200). Massachusetts: MIT Press.Google Scholar
  26. MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36, 435–444.CrossRefGoogle Scholar
  27. MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-cited influences. Journal of the American Society for Information Science and Technology, 61, 1–13.CrossRefGoogle Scholar
  28. Niu, B., Hong, S., Yuan, J., Peng, S., Wang, Z., & Wang, X. (2014). Global trends in sediment-related research in earth science during 1992–2011: A bibliometric analysis. Scientometrics, 98, 511–529.CrossRefGoogle Scholar
  29. Pajić, D., & Jevremov, T. (2014). Globally national—locally international: Bibliometric analysis of a SEE psychology journal. Psihologija, 47, 263–277.CrossRefGoogle Scholar
  30. Perakakis, P., Taylor, M., Buela-Casal, P. & Checa, P. (2006). A neuro-fuzzy system to calculate a journal internationality index. In Proceedings of the 1 st Congreso Nacional de Informatica, 1, 157–163.Google Scholar
  31. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82, 263–287.CrossRefGoogle Scholar
  32. Ren, S., & Rousseau, R. (2002). International visibility of Chinese scientific journals. Scientometrics, 53, 389–405.CrossRefGoogle Scholar
  33. Rodríguez, J. M. (2017). Disciplinarity and interdisciplinarity in citation and reference dimensions: knowledge importation and exportation taxonomy of journals. Scientometrics, 110, 617–642.CrossRefGoogle Scholar
  34. Soós, S., & Kampis, G. (2012). Beyond the basemap of science: Mapping multiple structures in research portfolios: Evidence from Hungary. Scientometrics, 93, 869–891.CrossRefGoogle Scholar
  35. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5, 14–26.CrossRefGoogle Scholar
  36. White, P. C. L., Taylor, A. C., Boutin, S., Myers, C., & Krebs, C. J. (2009). Wildlife Research in a changing world. Wildlife Research, 36, 275–278.CrossRefGoogle Scholar
  37. Zhou, Q., Rousseau, R., Yang, L., Yue, T., & Yang, G. (2012). A general framework for describing diversity within systems and similarity between systems with applications in informetrics. Scientometrics, 93, 787–812.CrossRefGoogle Scholar
  38. Zitt, M., & Bassecoulard, E. (1998). Internationalization of scientific journals: A measurement based on publication and citation scope. Scientometrics, 41, 255–271.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  2. 2.Curtin Institute for Biodiversity and Climate and School of ScienceCurtin UniversityPerthAustralia

Personalised recommendations