Advertisement

Scientometrics

, Volume 115, Issue 2, pp 1007–1015 | Cite as

Do traditional scientometric indicators predict social media activity on scientific knowledge? An analysis of the ecological literature

  • João Carlos Nabout
  • Fabrício Barreto Teresa
  • Karine Borges Machado
  • Vitor Hugo Mendonça do Prado
  • Luis Mauricio Bini
  • José Alexandre Felizola Diniz-Filho
Article

Abstract

Traditional citation-based indicators and activities on Online Social Media Platforms (OnSMP; e.g. Twitter) have been used to assess the impact of scientific research. However, the association between traditional indicators (i.e., number of citations and journal impact factor) and the new OnSMP metrics still deserve further investigations. Here, we used multivariate models to evaluate the relative influence of collaboration, time since publication and traditional indicators on the interest of 2863 papers published in five ecological journals from 2013 to 2015 as given by nine OnSMP. We found that most activities were concentrated on Twitter and Mendeley and that activities in these two OnSMP are highly correlated. Our results indicate that traditional indicators explained most of the variation in OnSMP activity. Considering that OnSMP activities are high as soon as the articles are made available online, contrasting with the slow pace in which the citations are accumulated, our results support the use of activities on OnSMP as an early signal of research impact of ecological articles.

Keywords

Citation rates Altmetric Social networks Science evaluation Ecology 

Notes

Acknowledgements

We thank the anonymous reviewer for criticisms that improved the manuscript. KBM thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for Doctoral scholarships. JCN, FBT, LMB, JAFDF were supported by productivity fellowships of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). VHMP was supported by University Research and Scientific Production Support Program (PROBIP/UEG). This paper was developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (Proc. 465610/2014-5) and Fundação de Amparo a Pesquisa do Estado de Goiás (FAPEG).

Supplementary material

11192_2018_2678_MOESM1_ESM.txt (287 kb)
Supplementary material 1 (TXT 287 kb)
11192_2018_2678_MOESM2_ESM.docx (828 kb)
Supplementary material 2 (DOCX 828 kb)
11192_2018_2678_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 11 kb)

References

  1. Aduku, K. J., Thelwall, M., & Kousha, K. (2017). Do Mendeley reader counts reflect the scholarly impact of conference papers? An investigation of computer science and engineering. Scientometrics, 112(1), 573–581.CrossRefGoogle Scholar
  2. Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4), 1257–1266.CrossRefGoogle Scholar
  3. Belsley, D. A., Kuh, E., & Welsch, R. E. (2005). Regression diagnostics: Identifying influential data and sources of collinearity. Hoboken, NJ: Wiley.zbMATHGoogle Scholar
  4. Bornmann, L. (2013). What is societal impact of research and how can it be assessed? A literature survey. Journal of the American Society for Information Science and Technology, 64(2), 217–233.CrossRefGoogle Scholar
  5. Bornmann, L. (2014). Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime. Journal of Informetrics, 8(4), 935–950.CrossRefGoogle Scholar
  6. Bornmann, L. (2015). Alternative metrics in scientometrics: A meta-analysis of research into three altmetrics. Scientometrics, 103(3), 1123–1144.CrossRefGoogle Scholar
  7. Bornmann, L., & Marx, W. (2014). How should the societal impact of research be generated and measured? A proposal for a simple and practicable approach to allow interdisciplinary comparisons. Scientometrics, 98(1), 211–219.CrossRefGoogle Scholar
  8. Boyd, D., Golder, S., & Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In Proceedings of the 43rd Hawaii international conference on system sciences. Google Scholar
  9. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoric approach. New York: Springer.zbMATHGoogle Scholar
  10. Carmel, Y., Kent, R., Bar-Massada, A., Blank, L., Liberzon, J., Nezer, O., et al. (2013). Trends in ecological research during the last three decades—A systematic review. PLoS ONE, 8(4), e59813.CrossRefGoogle Scholar
  11. Charlton, B. G., & Andras, P. (2007). Evaluating universities using simple scientometric research-output metrics: Total citation counts per university for a retrospective seven-year rolling sample. Science and Public Policy, 34(8), 555–563.CrossRefGoogle Scholar
  12. Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019.CrossRefGoogle Scholar
  13. Crean, A. J., Kopps, A. M., & Bonduriansky, R. (2014). Revisiting telegony: Offspring inherit an acquired characteristic of their mother’s previous mate. Ecology Letters, 17(12), 1545–1552.CrossRefGoogle Scholar
  14. Darling, E. S., Shiffman, D., Côté, I. M., & Drew, J. A. (2013). The role of twitter in the life cycle of a scientific publication. PeerJ PrePrints, 1, e16v11.Google Scholar
  15. Diniz-Filho, J. A. F., Fioravanti, M. C., Bini, L. M., & Rangel, T. R. (2016). Drivers of academic performance in a Brazilian university under a government-restructuring program. Journal of Informetrics, 10, 151–161.CrossRefGoogle Scholar
  16. Faraway. (2016). Faraway: Functions and Datasets for Books by Julian Faraway. R package version 1.0.7, https://CRAN.R-project.org/package=faraway. Accessed September 19, 2017.
  17. Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72.CrossRefGoogle Scholar
  18. Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.CrossRefGoogle Scholar
  19. Hassan, S. U., Imran, M., Gillani, U., Aljohani, N. R., Bowman, T. D., & Didegah, F. (2017). Measuring social media activity of scientific literature: An exhaustive comparison of scopus and novel altmetrics big data. Scientometrics.  https://doi.org/10.1007/s11192-017-2512-x.Google Scholar
  20. Haustein, S. (2016). Grand challenges in altmetrics: Heterogeneity, data quality and dependencies. Scientometrics, 108(1), 413–423.CrossRefGoogle Scholar
  21. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. PNAS, 102(46), 16569–16572.CrossRefzbMATHGoogle Scholar
  22. Inger, R., Gregory, R., Duffy, J. P., Stott, I., Voříšek, P., & Gaston, K. J. (2015). Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecology Letters, 18(1), 28–36.CrossRefGoogle Scholar
  23. Karthik, R. (2014). rAltmetric: Retrieves Altmetrics Data For Any Published Paper From Altmetric.com. R package version 0.6, https://github.com/ropensci/rAltmetric. Accessed September 19, 2017.
  24. King, D. A. (2004). The scientific impact of nations. Nature, 430(6997), 311–316.CrossRefGoogle Scholar
  25. Koteyko, N., Nerlich, B., & Hellsten, I. (2015). Climate change communication and the internet: Challenges and opportunities for research. Environmental Communication, 9(2), 149–152.CrossRefGoogle Scholar
  26. Krauss, J. (2007). Journal self-citation rates in ecological sciences. Scientometrics, 73(1), 79–89.CrossRefGoogle Scholar
  27. Krebs, C. J. (1972). Ecology: The experimental analysis of distribution and abundance. New York: Harper and Row.Google Scholar
  28. Legendre, P. (2008). Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1(1), 3–8.CrossRefGoogle Scholar
  29. Legendre, P., & Legendre, L. (2012). Numerical ecology. Amsterdam: Elsevier.zbMATHGoogle Scholar
  30. Leimu, R., & Koricheva, J. (2005). What determines the citation frequency of ecological papers? Trends in Ecology & Evolution, 20(1), 28–32.CrossRefGoogle Scholar
  31. Lin, J., & Fenner, M. (2013). The many faces of article-level metrics. Bulletin of the American Society for Information Science and Technology, 39(4), 27–30.CrossRefGoogle Scholar
  32. Mohammadi, E., Thelwall, M., Haustein, S., & Larivière, V. (2015). Who reads research articles? An altmetrics analysis of Mendeley user categories. Journal of the Association for Information Science and Technology, 66(9), 1832–1846.CrossRefGoogle Scholar
  33. Mostert, S. P., Ellenbroek, S. P., Meijer, I., Van Ark, G., & Klasen, E. C. (2010). Societal output and use of research performed by health research groups. Health Research Policy and Systems, 8(1), 30.CrossRefGoogle Scholar
  34. Nabout, J. C., Parreira, M. R., Teresa, F. B., Carneiro, F. M., Cunha, H. F., Ondei, L. S., et al. (2015). Publish (in group) or perish (alone): The trend from single to multi-authorship in biological papers. Scientometrics, 102, 357–364.CrossRefGoogle Scholar
  35. Neff, M., & Corley, E. (2009). 35 years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics, 80(3), 657–682.CrossRefGoogle Scholar
  36. Nicholas, D., & Rowlands, I. (2011). Social media use in the research workflow. Information Services and Use, 31(1), 61–83.CrossRefGoogle Scholar
  37. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2016). vegan: Community ecology package. R package version 2.3-4, http://CRAN.R-project.org/package=vegan. Accessed September 19, 2017.
  38. Padial, A. A., Nabout, J. C., Siqueira, T., Bini, L. M., & Diniz-Filho, J. A. (2010). Weak evidence for determinants of citation frequency in ecological articles. Scientometrics, 85, 1–12.CrossRefGoogle Scholar
  39. Parreira, M. R., Machado, K. B., Logares, R., Diniz-Filho, J. A. F., & Nabout, J. C. (2017). The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics, 113(3), 1539–1550.CrossRefGoogle Scholar
  40. Parsons, E. C. M., Shiffman, D. S., Darling, E. S., Spillman, N., & Wright, A. J. (2014). How twitter literacy can benefit conservation scientists. Conservation Biology, 28(2), 299–301.CrossRefGoogle Scholar
  41. Pearson, E., Tindle, H., Ferguson, M., Ryan, J., & Litchfield, C. (2016). Can we tweet, post and share our way to a more sustainable society? A review of the current contributions and future potential of #socialmediaforsustainability. Annual Review of Environmental and Resources, 41(13), 1–13.Google Scholar
  42. Peoples, B. K., Midway, S. R., Sackett, D., Lynch, A., & Cooney, P. B. (2016). Twitter predicts citation rates of ecological research. PLoS ONE, 11(11), e0166570.CrossRefGoogle Scholar
  43. Piwowar, H. (2013). Altmetrics: Value all research products. Nature, 493(7431), 159.Google Scholar
  44. Priem, J., & Costello, K. L. (2010). How and why scholars cite on Twitter. Proceedings of the Association for Information Science and Technology, 47(1), 1–4.CrossRefGoogle Scholar
  45. Quintero, I., & Wiens, J. J. (2013). Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16(8), 1095–1103.CrossRefGoogle Scholar
  46. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/. Accessed September 19, 2017.
  47. Shiffman, D. S. (2012). Twitter as a tool for conservation education and outreach: What scientific conferences can do to promote live-tweeting. Journal of Environmental Studies and Sciences, 2(3), 257–262.CrossRefGoogle Scholar
  48. Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PLoS ONE, 8(5), e64841.CrossRefGoogle Scholar
  49. Van Dalen, H., & Henkens, K. (2001). What makes a scientific article influential? The case of demographers. Scientometrics, 50(3), 455–482.CrossRefGoogle Scholar
  50. Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 1–25.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • João Carlos Nabout
    • 1
  • Fabrício Barreto Teresa
    • 1
  • Karine Borges Machado
    • 2
  • Vitor Hugo Mendonça do Prado
    • 1
  • Luis Mauricio Bini
    • 2
  • José Alexandre Felizola Diniz-Filho
    • 2
  1. 1.Universidade Estadual de Goiás, Campus de Ciências Exatas e Tecnológicas (CCET)AnápolisBrazil
  2. 2.Universidade Federal de Goiás, Campus II UFGGoiâniaBrazil

Personalised recommendations