, Volume 114, Issue 1, pp 159–179 | Cite as

Growth patterns of the network of international collaboration in science

  • Leonardo Costa Ribeiro
  • Márcia Siqueira Rapini
  • Leandro Alves Silva
  • Eduardo Motta Albuquerque


International knowledge flows might be eroding national borders of innovation systems and contributing for the emergence of an international system of innovation. This paper investigates how far the scientific international collaboration has developed and how stable the structure of those collaborations is, evaluating the properties of those networks and their long term behaviour. The data collected and analyzed show that international collaboration has been growing with a peculiar pattern—faster than an exponential growth-, shaping a scale-free network that has preserved its structure while it grows. This paper analyses the properties of this network and the implications of those properties for an emerging global innovation system in terms of growth, hierarchy, opportunity, challenges, and robustness and for the generation and transfer of technology


Knowledge flows International co-authorships Science Innovation systems 



We thank the financial support from CNPq (Processes 459627/2014-7, 302857/2015-0 and 401054/2016-0). We thank Giulia Tonon and José Carlos Miranda for research assistance. Comments, criticisms and suggestions from two anonimous referees from Scientometrics helped to improve our earlier version of this paper. The usual disclaimer holds.


  1. Adams, J. (2013). The fourth age of research. Nature, 497, 557–559.CrossRefGoogle Scholar
  2. Barabási, A.-L. (2016) Network Science. Cambridge: Cambridge University Press (available at
  3. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 285, 509–512.MathSciNetzbMATHGoogle Scholar
  4. Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Braun, T., Glanzel, W., & Grupp, H. (1995a). The Weight of 50 Nations in 27 Science Areas, 1989–1993 (Part I: All fields combined, Mathematics, Engineering, Chemistry and Physics). Scientometrics, 33(3), 263–293.CrossRefGoogle Scholar
  6. Braun, T., Glanzel, W., & Grupp, H. (1995b). The Weight of 50 Nations in 27 Science Areas, 1989–1993 (Part II: Life Sciences). Scientometrics, 34(2), 207–237.CrossRefGoogle Scholar
  7. Britto, G., Camargo, O. S., Kruss, G., & Albuquerque, E. M. (2013). Global interactions between firms and universities: global innovation networks as first steps towards a Global Innovation System. Innovation and Development, 3(1), 71–88.CrossRefGoogle Scholar
  8. Dunning, J., & Lundan, S. (2008). Multinational enterprises and the global economy (2nd ed.). Cheltenham: Edward Elgar.Google Scholar
  9. Freeman, R. (2010). Globalization of scientific and engineering talent: international mobility of students, workers, and ideas and the world economy. Economics of Innovation and New Technology, 19(5), 393–406.CrossRefGoogle Scholar
  10. Freeman, R. (2017). Migration of ideas. Science, 356(6339), 696–697.CrossRefGoogle Scholar
  11. Freeman, R., Gangulli, I., & Murciano-Goroff, R. (2015). Why and wherefore of increased scientific collaboration. In A. Jaffe & B. Jones (Eds.), The changing frontier: Rethinking science and innovation policy (pp. 17–48). Chicago: NBER/University of Chicago Press.Google Scholar
  12. Gilden D. L., Thornton T, & Mallon M. W. (1995) Science, Vol. 267, p. 1837–1839.Google Scholar
  13. Glänzel, W., & Schubert, A. (2005). Domesticity and internationality in co-authorship, references and citations. Scientometrics, 65(3), 323–342.CrossRefGoogle Scholar
  14. Gontis, V., Kaulakys, B., Alaburda, M., & Ruseckas, J. (2004). Evolution of complex systems and 1/f noise: From physics to financial markets. Solid State Phenomena, 97–98, 65–70.CrossRefGoogle Scholar
  15. Jones, B. F. (2011). As science evolves, how can science policy? In J. Lerner & S. Stern (Eds.), Innovation policy and the economy (Vol. 11, pp. 103–131). Chicago: University of Chicago Press.Google Scholar
  16. Katz, J., & Martin, B. (1997). What is research collaboration? Research Policy, 26(1), 1–18.CrossRefGoogle Scholar
  17. Kaulakys, B., & Meökauskas, T. (1998). Modeling 1/f noise. Physical Review E, 58, 7013–7019.CrossRefGoogle Scholar
  18. Kruss, G., Lee, K., Suzigan, W., Albuquerque, E. (2015). Introduction. In: Albuquerque, E., Suzigan, W., Kruss, G., Lee, K. (Eds) Developing National Systems of Innovation. University-Industry interactions in the Global South. Cheltenham/Ottawa: Edward Elgar/IDRC, pp. 1–28 (available at
  19. Maxim, V., Xendur, Levent, Fadili, Jalal, Suckling, John, Gould, Rebecca, Howard, Rob, et al. (2005). Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage, 25, 141–158.CrossRefGoogle Scholar
  20. National Science Board. (1996). Science and engineering indicators 1996. Arlington: National Science Foundation.Google Scholar
  21. National Science Board. (2016). Science and engineering indicators 2016. Arlington: National Science Foundation.Google Scholar
  22. NATURE (2016) International research collaborations on the rise. Nature Index (—accessed 19 november 2016).
  23. Nelson, R., & Rosenberg, N. (1995). Introduction. In R. Nelson (Ed.), National innovation systems: A comparative analysis. New York, Oxford: Oxford University.Google Scholar
  24. OECD. (2015). OECD Science, Technology and Industry Scoreboard 2015: Innovation for growth and society. Paris: OECD Publishing.CrossRefGoogle Scholar
  25. OECD and SCImago Research Group (CSIC) (2016) Compendium of Bibliometric Science Indicators. OECD, Paris. Accessed from
  26. Patel, P., & Pavitt, K. (1998). National systems of innovation under strain: The internationalization of corporate R&D. Brighton: SPRU.Google Scholar
  27. Ribeiro, L. C., Kruss, G., Britto, G., Ruiz, R. M., Bernardes, A. T., & Albuquerque, E. M. (2014). A methodology for unveiling global innovation networks: Patent citations as clues to cross border knowledge flows. Scientometrics, 101, 61–83.CrossRefGoogle Scholar
  28. Ribeiro, L. C., Ruiz, R. M., Bernardes, A. T., & Albuquerque, E. M. (2006). Science in the developing world: Running twice as fast? Computer Science & Engineering: An International Journal, 8, 86–92.CrossRefGoogle Scholar
  29. Science. (2017). Crossing borders along an endless frontier. Science, 356(6339), 694–697.Google Scholar
  30. Soete, L., Verspagen, B., & Weel, B. (2010). Systems of innovation. In B. Hall & N. Rosenberg (Eds.), Handbook of the economics of innovation (Vol. II). Amsterdam: North Holland.Google Scholar
  31. Wagner, C., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.CrossRefGoogle Scholar
  32. Wagner, C., Park, H. W., Leydesdorff, L. (2015) The continuing growth of global cooperation networks in research: A conundrum for national governments. PLOS one, July 21, 2015Google Scholar
  33. Wong, H. (2003). Low-frequency noise study in electron devices: Review and update. Microelectronics Reliability, 43, 585–599.CrossRefGoogle Scholar
  34. Yamamoto, Y., Nakamura, Y., Sato, H., Yamamoto, M., Kato, K., & Hughson, R. (1995). On the fractal nature of heart rate variability in humans: Effects of vagal blockade. American Physiological Society, R830, 0363–6119.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.InmetroRio de JaneiroBrazil
  2. 2.UFMGBelo HorizonteBrazil

Personalised recommendations