Advertisement

Scientometrics

, Volume 113, Issue 3, pp 1407–1438 | Cite as

Using PageRank in the analysis of technological progress through patents: an illustration for biotechnological inventions

  • Andreas Reinstaller
  • Peter Reschenhofer
Article

Abstract

This paper examines whether PageRank algorithms are a valid instrument for the analysis of technical progress in specific technological fields by means of patent citation data. It provides evidence for patent data in biotechnology. Recent literature has been critical with regard to the use of PageRank for the analysis of scientific citation networks. The results reported in this paper indicate, however, that with some minor adaptations and careful interpretation of the results the algorithm can be used to capture some important stylised facts of technical progress and the importance of single patents relatively well especially if compared to indicators based on direct inward citations only.

Keywords

Patent citations Technological progress PageRank algorithm Biotechnology 

JEL Classification

O31 O32 O34 

Notes

Acknowledgements

The research leading to this paper has received funding in the context of the Austria 2025 Research Project funded by the Federal Ministry of Transport, Innovation and Technology (BMVIT), the Federal Ministry Economic Affairs and Research (BMWFW), and the Austrian National Bank (OeNB). Support by the Austrian Council for Research and Technology Development is also acknowledged. We thank Kathrin Hoffmann for research assistance.

References

  1. Abrams, D., Akcigit, U., & Popadak, J. (2013). Understanding the link between patent value and citations: Creative destruction or defensive disruption. mimeo., University of Pennsylvania.Google Scholar
  2. Acemoglu, D., Akcigit, U., & Kerr, W. (2016). Innovation network. Working Paper 22783, National Bureau of Economic Research.Google Scholar
  3. Alcacer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in U.S. patents: An overview and analysis. Research Policy, 38, 415–427.CrossRefGoogle Scholar
  4. Atallah, G., & Rodriguez, G. (2006). Indirect patent citations. Scientometrics, 67, 437–65.CrossRefGoogle Scholar
  5. Avrachenko, L., Litvak, N., & Pham, K. (2008). A singular pertubation approach for choosing the PageRank damping factor. Internet Mathematics, 5, 47–70.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Bessen, J. (2008). The value of U.S. patents by owner and patent characteristics. Research Policy, 37, 932–945.CrossRefGoogle Scholar
  7. Boldi, P., Santini, S., & Vigna, S. (2005). PageRank as a function of the damping factor. In Proceedings of the 14th international conference on the world wide web, Association for Computing Machinery, New York.Google Scholar
  8. Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23, 191–201.CrossRefGoogle Scholar
  9. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107–117.CrossRefGoogle Scholar
  10. Bruck, P., Rethy, I., Szente, J., Tobochnik, J., & Erdi, P. (2016). Recognition of emerging technology trends: Cass-selective study of citations in the U.S. patent citation network. Scientometrics, 107, 1465–1475.CrossRefGoogle Scholar
  11. Castaldi, C., Frenken, K., & Los, B. (2014). Related variety, unrelated variety and technological breakthroughs: An analysis of US state-level patenting. Regional Studies, 49, 767–781.CrossRefGoogle Scholar
  12. Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google. Journal of Informetrics, 8, 8–15.CrossRefGoogle Scholar
  13. de Rassenfosse, G., Dernis, H., & Boedt, G. (2014). Patent citation data in social science research: Overview and best practices. Working Paper 8/14, Melbourne Institute Working Paper.Google Scholar
  14. Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60, 2229–2243.CrossRefGoogle Scholar
  15. Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Predicition of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95, 225–242.CrossRefGoogle Scholar
  16. Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: is there an advantage in using multiple indicators? Research Policy, 32, 1365–1379.CrossRefGoogle Scholar
  17. Hall, B., Griliches, Z., & Pakes, A. (1991). R&D, patents, and market value revisited: Is there a second (technological opportunity) factor? Economics of Innovation and New Technology, 1(1), 183–202.Google Scholar
  18. Hall, B., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND Journal of Economics, 36, 16–38.Google Scholar
  19. Harhoff, D., Narin, F., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 812, 511–515.CrossRefGoogle Scholar
  20. Jaffe, A., & de Rassenfosse, G. (2016). Patent citation data in social science research: Overview and best practices. Working Paper 21868, National Bureau of Economic Research.Google Scholar
  21. Katila, R. (2000). Using patent data to measure innovation performance. International Journal of Business Performance Management, 2, 180–193.CrossRefGoogle Scholar
  22. Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18, 39–43.CrossRefzbMATHGoogle Scholar
  23. Kogler, D. F., Rigby, D. L., & Tucker, I. (2013). Mapping knowledge space and technological relatedness in US cities. European Planning Studies, 21, 1374–1391.CrossRefGoogle Scholar
  24. Langville, A., & Meyer, C. (2003). Survey: Deeper inside PageRank. Internet Mathematics, 1, 335–380.CrossRefzbMATHGoogle Scholar
  25. Lanjouw, J., & Schankerman, M. (2001). Characteristics of patent litigation: A window on competition. RAND Journal of Economics, 32, 129–51.CrossRefGoogle Scholar
  26. Mariani, M. S., Medo, M., & Zhang, Y.-C. (2015). Ranking nodes in growing networks: When PageRank fails. Scientific Reports, 5, 16181.CrossRefGoogle Scholar
  27. Maslov, S., & Redner, S. (2008). Promise and pitfalls of extending google’s PageRank algorithm to citation networks. Journal of Neuroscience, 28(44), 11103–11105.CrossRefGoogle Scholar
  28. Scherer, F., & Harhoff, D. (2000). Technology policy for a world of skew-distributed outcomes. Research Policy, 29, 559–566.CrossRefGoogle Scholar
  29. Shaffer, M. (2011). Entrepreneurial innovation: Patent rank and marketing science. PhD dissertation, Washington State University.Google Scholar
  30. Silverberg, G. (2002). The discrete charm of the bourgeoisie: Quantum and continuous perspectives on innovation and growth. Research Policy, 31, 1275–1289.CrossRefGoogle Scholar
  31. Silverberg, G., & Verspagen, B. (2007). The size distribution of innovation revisited: An application of extreme value statistics to citation and value measures of patent significance. Journal of Econometrics, 139, 318–339.CrossRefzbMATHMathSciNetGoogle Scholar
  32. Trajtenberg, M. (1990). A penny for your quote: Patent citations and the value of innovations. RAND Journal of Economics, 21, 172–187.CrossRefGoogle Scholar
  33. Valverde, S., Sole, R. V., Bedau, M. A., & Packard, N. (2007). Topology and evolution of technology innovation networks. Physical Review E, 76(5), 056118.CrossRefGoogle Scholar
  34. Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10, 93–115.CrossRefzbMATHGoogle Scholar
  35. Walker, D., Xie, H., Yan, K.-K., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007(06), P06010.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Austrian Institute of Economic Research (WIFO)ViennaAustria

Personalised recommendations