, Volume 113, Issue 2, pp 969–983 | Cite as

Streamlining science with structured data archives: insights from stroke rehabilitation

  • Nasrin Mohabbati-Kalejahi
  • Mohammad Ali Alamdar Yazdi
  • Fadel M. Megahed
  • Sydney Y. Schaefer
  • Lara A. Boyd
  • Catherine E. Lang
  • Keith R. LohseEmail author


Recent advances in bibliometrics have focused on text-mining to organize scientific disciplines based on author networks, keywords, and citations. These approaches provide insights, but fail to capture important experimental data that exist in many scientific disciplines. The objective of our paper is to show how such data can be used to organize the literature within a discipline, and identify knowledge gaps. Our approach is especially important for disciplines relying on randomized control trials. Using stroke rehabilitation as an informative example, we construct an interactive graphing platform to address domain general scientific questions relating to bias, common data elements, and relationships between key constructs in a field. Our platform allows researchers to ask their own questions and systematically search the literature from the data up.


Meta-science Randomized controlled trials Data visualization Bibliometrics 



The authors would like to thank Adam Raikes, a Ph.D. student at Utah State University, for his assistance with data management/extraction. In addition, we are grateful to the insights and feedback provided by Yedurag Babu, a recent graduate of Auburn University and a current data scientist at The Home Depot, on some of the earlier versions of the interactive visualizations.

Supplementary material

11192_2017_2482_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)


  1. Bernhardt, J., Borschmann, K., Boyd, L., Carmichael, S. T., Corbett, D., Cramer, S. C., et al. (2016). Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke., 11(4), 454–458.CrossRefGoogle Scholar
  2. Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). Introduction to meta-analysis. Hoboken: John Wiley & Sons, Ltd.CrossRefzbMATHGoogle Scholar
  3. Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews (2nd ed.). Thousand Oaks: Sage.Google Scholar
  4. Crowley, P. (1996). Prophylactic corticosteroids for preterm birth. Cochrane Database of Systematic Reviews. doi: 10.1002/14651858.CD000065.
  5. Cumming, G. (2013). The new statistics why and how. Psychological Science. 0956797613504966.Google Scholar
  6. Dijkers, M., Hart, T., Tsaousides, T., & Whyte, J. (2014). Treatment taxonomy for rehabilitation: Past, present, and prospects. Archives of Physical Medicine and Rehabilitation, 95, S6–S16.CrossRefGoogle Scholar
  7. Duncan, P. W., Sullivan, K. J., Behrman, A. L., Azen, S. P., Wu, S. S., Nadeau, S. E., et al. (2011). Body-weight–supported treadmill rehabilitation after stroke. New England Journal of Medicine, 364(21), 2026–2036.CrossRefGoogle Scholar
  8. Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634.CrossRefGoogle Scholar
  9. Eisenstein, E. L., Collins, R., Cracknell, B. S., Podesta, O., Reid, E. D., Sandercock, P., et al. (2008). Sensible approaches for reducing clinical trial costs. Clinical Trials, 5(1), 75–84.CrossRefGoogle Scholar
  10. Fink, A. (2005). Conducting research literature reviews: From the Internet to paper. Thousand Oaks: Sage.Google Scholar
  11. Chalmers, I., & Haynes, B. (1995). Reporting, updating, and correcting systematic reviews of the effects of health care. In I. Chalmers, & D. G. Altman (Eds.), Systematic reviews (pp. 86–95). London: BMJ publishing Group.Google Scholar
  12. Hagger, M. S., & Chatzisarantis, N. L. (2016). A multilab preregistered replication of the ego-depletion effect. Perspectives on Psychological Science, 11(4), 546–573.CrossRefGoogle Scholar
  13. Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.CrossRefGoogle Scholar
  14. Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). Hoboken: John Wiley & Sons.Google Scholar
  15. Hu, J. C. (2016). Studying the science of science. Science. doi: 10.1126/science.caredit.a1600051.Google Scholar
  16. Ioannidis, J. P. (2014). Is your most cited work your best? Nature, 514(7524), 561.CrossRefGoogle Scholar
  17. Ioannidis, J. P. (2016). Why most clinical research is not useful. PLoS Med, 13(6), e1002049.CrossRefGoogle Scholar
  18. Katz-Leurer, M., Sender, I., Keren, O., & Dvir, Z. (2006). The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clinical Rehabilitation, 20(5), 398–405.CrossRefGoogle Scholar
  19. Khan, A., Choudhury, N., Uddin, S., Hossain, L., & Baur, L. A. (2016). Longitudinal trends in global obesity research and collaboration: A review using bibliometric metadata. Obesity Reviews, 17, 377–385.CrossRefGoogle Scholar
  20. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7–15.CrossRefGoogle Scholar
  21. Lang, C. E., Strube, M. J., Bland, M. D., Waddell, K. J., Cherry-Allen, K. M., Nudo, R. J., et al. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Annals of Neurology, 80(3), 342–354.CrossRefGoogle Scholar
  22. Liebeskind, D. S., Albers, G. W., Crawford, K., Derdeyn, C. P., George, M. S., Palesch, Y. Y., et al. (2015). Imaging in StrokeNet: Realizing the potential of big data. Stroke. Stroke, 46(7), 2000–2006.CrossRefGoogle Scholar
  23. Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke, 45(7), 2053–2058.CrossRefGoogle Scholar
  24. Lohse, K. R., Schaefer, S. Y., Raikes, A. C., Boyd, L. A., & Lang, C. E. (2016). Asking new questions with old data: The centralized open-access rehabilitation database for stroke. Frontiers in Neurology. doi: 10.3389/fneur.2016.00153.
  25. Macko, R. F., Ivey, F. M., Forrester, L. W., Hanley, D., Sorkin, J. D., Katzel, L. I., et al. (2005). Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke. Stroke, 36(10), 2206–2211.CrossRefGoogle Scholar
  26. Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating of quality randomized controlled trials. Physical Therapy, 83, 713–721.Google Scholar
  27. Minelli, C., & Baio, G. (2015). Value of information: a tool to improve research prioritization and reduce waste. PLoS Med, 12(9), e1001882.CrossRefGoogle Scholar
  28. Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.CrossRefzbMATHGoogle Scholar
  29. Morone, G., Bragoni, M., Iosa, M., De Angelis, D., Venturiero, V., Coiro, P., et al. (2011). Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabilitation and Neural Repair, 25(7), 636–644.CrossRefGoogle Scholar
  30. National Science Foundation. (2011). A new visualization method makes research more organized and efficient.
  31. Page, S. J., Levine, P., & Leonard, A. C. (2005). Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabilitation and Neural Repair, 19(1), 27–32.CrossRefGoogle Scholar
  32. Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J. Y., Lazar, R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair, 22(1), 64–71.CrossRefGoogle Scholar
  33. Wirth, R. Hipp, J. (2000) CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. (pp. 29–39).Google Scholar
  34. Saver, J. L., Warach, S., Janis, S., Odenkirchen, J., Becker, K., Benavente, O., et al. (2012). Standardizing the structure of stroke clinical and epidemiologic research data. Stroke, 43(4), 967–973.CrossRefGoogle Scholar
  35. Stinear, C. M., Barber, P. A., Petoe, M., Anwar, S., & Byblow, W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 135(8), 2527–2535.CrossRefGoogle Scholar
  36. Stinear, C. M., & Byblow, W. D. (2014). Predicting and accelerating motor recovery after stroke. Current Opinion in Neurology, 27(6), 624–630.Google Scholar
  37. Thompson, S. G. (1994). Why sources of heterogeneity in meta-analysis should be investigated. British Medical Journal, 309(6965), 1351.CrossRefGoogle Scholar
  38. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  39. Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., et al. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE, 9(2), e87987.CrossRefGoogle Scholar
  40. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.CrossRefGoogle Scholar
  41. Whyte, J., & Hart, T. (2003). It’s more than a black box, it’s a Russian doll: Defining rehabilitation treatments. American Journal of Physical Medicine and Rehabilitation, 82, 639–653.Google Scholar
  42. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  43. Wickham, H., & Francois, R. (2015). dplyr: A grammar of data manipulation. R Package Version 0.4, 1, 20.Google Scholar
  44. Winters, C., van Wegen, E. E., Daffertshofer, A., & Kwakkel, G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabilitation and Neural Repair, 29(7), 614–622.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Nasrin Mohabbati-Kalejahi
    • 1
  • Mohammad Ali Alamdar Yazdi
    • 1
  • Fadel M. Megahed
    • 2
    • 3
  • Sydney Y. Schaefer
    • 4
  • Lara A. Boyd
    • 5
  • Catherine E. Lang
    • 6
  • Keith R. Lohse
    • 7
    Email author
  1. 1.Department of Industrial and Systems EngineeringAuburn UniversityAuburnUSA
  2. 2.Farmer School of BusinessMiami UniversityOxfordUSA
  3. 3.Center for Analytics and Data Science (CADS)Miami UniversityOxfordUSA
  4. 4.School of Biological and Health Systems EngineeringArizona State UniversityTempeUSA
  5. 5.Department of Physical TherapyUniversity of British ColumbiaVancouverCanada
  6. 6.Program in Physical Therapy, Occupational Therapy, and Department of NeurologyWashington University School of Medicine in St. LouisSt. LouisUSA
  7. 7.Department of Health, Kinesiology, and RecreationUniversity of UtahSalt Lake CityUSA

Personalised recommendations