Skip to main content
Log in

What makes the first forward citation of a patent occur earlier?

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Identifying the economic value of a patent is crucial to technology management. It also facilitates the commercialization and transactions of patents. As a proxy of patent value, forward citation counting is widely used, but it takes a long time for a patent to be sufficiently cited. In this context, we suggest the first citation lag, namely the time taken until the first citation, as a proxy of patent value, as it is positively correlated with the patent value and considers the fact that important patents with a high economic value tend to receive many citations in a short space of time. We explore the influential patent attributes related to the first citation lag to build a model to predict the patent value. By using the Cox proportional hazard model on green inventory patent data, we find that patents with a shorter technology cycle time and a larger number of IPC four-digit classes, claims, patent family, and backward citations are associated with the shorter first citation lag, while a patent’s science linkage has an inverse U-shaped relationship with the first citation lag. Further, patents having an unconventional technological core have a longer first citation lag and among patents having an unconventional technological core, the presence of a novel element makes the first citation earlier. Our study is expected to help patent evaluation in the early stage of technology transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology Review, 80(7), 40–47.

    Google Scholar 

  • Achilladelis, B., Schwarzkopf, A., & Cines, M. (1987). A study of innovation in the pesticide industry: Analysis of the innovation record of an industrial sector. Research Policy, 16(2–4), 175–212.

    Article  Google Scholar 

  • Ahuja, G., & Morris Lampert, C. (2001). Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6–7), 521–543.

    Article  Google Scholar 

  • Albert, M. B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.

    Article  Google Scholar 

  • Ardito, L., Messeni Petruzzelli, A., Dangelico, R. M., & Albino, V. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854.

    Article  Google Scholar 

  • Argyres, N. S., & Silverman, B. S. (2004). R&D, organization structure, and the development of corporate technological knowledge. Strategic Management Journal, 25(8–9), 929–958.

    Article  Google Scholar 

  • Arora, A., & Gambardella, A. (1990). Complementarity and external linkages: The strategies of the large firms in biotechnology. The Journal of Industrial Economics, 38, 361–379.

  • Assink, M. (2006). The inhibitors of disruptive innovation capability: A conceptual model. European Journal of Innovation Management, 9(2), 215–233.

    Article  Google Scholar 

  • Bapuji, H., Loree, D., & Crossan, M. (2011). Connecting external knowledge usage and firm performance: An empirical analysis. Journal of Engineering and Technology Management, 28(4), 215–231.

    Article  Google Scholar 

  • Bass, S. D., & Kurgan, L. A. (2010). Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics, 82(2), 217–241.

    Article  Google Scholar 

  • Baudry, M., & Dumont, B. (2006). Patent renewals as options: Improving the mechanism for weeding out lousy patents. Review of Industrial Organization, 28(1), 41–62.

    Google Scholar 

  • Callon, M. (1980). The state and technical innovation: A case study of the electrical vehicle in France. Research Policy, 9(4), 358–376.

    Article  Google Scholar 

  • Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137–143.

    Article  Google Scholar 

  • Capaldo, A., Lavie, D., & Messeni Petruzzelli, A. (2017). Knowledge maturity and the scientific value of innovations: The roles of knowledge distance and adoption. Journal of Management, 43, 503–533.

    Article  Google Scholar 

  • Carpenter, M. P., Narin, F., & Woolf, P. (1981). Citation rates to technologically important patents. World Patent Information, 3(4), 160–163.

    Article  Google Scholar 

  • Chen, Y. S., & Chang, K. C. (2010). Exploring the nonlinear effects of patent citations, patent share and relative patent position on market value in the US pharmaceutical industry. Technology Analysis & Strategic Management, 22(2), 153–169.

    Article  MathSciNet  Google Scholar 

  • Czarnitzki, D., Hussinger, K., & Schneider, C. (2012). The nexus between science and industry: Evidence from faculty inventions. The Journal of Technology Transfer, 37(5), 755–776.

    Article  Google Scholar 

  • Debackere, K., & Veugelers, R. (2005). The role of academic technology transfer organizations in improving industry science links. Research Policy, 34(3), 321–342.

    Article  Google Scholar 

  • Deng, Z., Lev, B., & Narin, F. (1999). Science and technology as predictors of stock market performance. Financial Analysis Journal, 55, 20–32.

    Article  Google Scholar 

  • Eisenberg, R. S., & Nelson, R. R. (2002). Public vs. proprietary science: A fruitful tension? Academic Medicine, 77(12, Part 2), 1392–1399.

    Article  Google Scholar 

  • Etzkowitz, H. (1998). The norms of entrepreneurial science: Cognitive effects of the new university–industry linkages. Research Policy, 27(8), 823–833.

    Article  Google Scholar 

  • Fisch, C., Sandner, P., & Regner, L. (2017). The value of Chinese patents: An empirical investigation of citation lags. China Economic Review, 45, 22–34.

  • Fischer, T., & Leidinger, J. (2014). Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions. Research Policy, 43(3), 519–529.

    Article  Google Scholar 

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Gambardella, A. (1992). Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s. Research Policy, 21(5), 391–407.

    Article  Google Scholar 

  • Gambardella, A., Harhoff, D., & Verspagen, B. (2008). The value of European patents. European Management Review, 5(2), 69–84.

    Article  Google Scholar 

  • Gay, C., Le Bas, C., Patel, P., & Touach, K. (2005). The determinants of patent citations: An empirical analysis of French and British patents in the US. Economics of Innovation and New Technology, 14(5), 339–350.

    Article  Google Scholar 

  • Gerken, J. M., & Moehrle, M. G. (2012). A new instrument for technology monitoring: Novelty in patents measured by semantic patent analysis. Scientometrics, 91(3), 645–670.

    Article  Google Scholar 

  • Griliches, Z. (2006). Patent statistics as economic indicators: A survey. Journal of Economic Literature, XXVIII (4), December 1661–1707, International Library of Critical Writings in Economics, 197(1), 405.

    Google Scholar 

  • Gronqvist, C. (2009). The private value of patents by patent characteristics: Evidence from Finland. Journal of Technology Transfer, 34(2), 159–168.

    Article  Google Scholar 

  • Guellec, D., & de La Potterie, B. V. P. (2007). The economics of the European patent system: IP policy for innovation and competition. Oxford: Oxford University Press on Demand.

    Book  Google Scholar 

  • Gupta, V. K. (2006). References to literature in patent documents: A case study of CSIR in India. Scientometrics, 68(1), 29–40.

    Article  Google Scholar 

  • Hall, B., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. The Rand Journal of Economics, 36(1), 16–38.

    Google Scholar 

  • Han, E. J., & Sohn, S. Y. (2015). Patent valuation based on text mining and survival analysis. The Journal of Technology Transfer, 40(5), 821–839.

    Article  Google Scholar 

  • Hanel, P., & St-Pierre, M. (2006). Industry–university collaboration by Canadian manufacturing firms. The Journal of Technology Transfer, 31(4), 485–499.

    Article  Google Scholar 

  • Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and patent value rights. Research Policy, 32(8), 1343–1363.

    Article  Google Scholar 

  • Harhoff, D., & Wagner, S. (2009). The duration of patent examination at the European Patent Office. Management Science, 55(12), 1969–1984.

    Article  Google Scholar 

  • Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387–398.

    Article  Google Scholar 

  • Heller, M. A., & Eisenberg, R. S. (1998). Can patents deter innovation? The Anticommons in Biomedical Research. Science, 280(5364), 698–701.

    Google Scholar 

  • Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. Review of Economics and Statistics, 80(1), 119–127.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z. K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.

    Article  Google Scholar 

  • Hurley, R. F., & Hult, G. T. M. (1998). Innovation, market orientation, and organizational learning: An integration and empirical examination. The Journal of Marketing, 62, 42–54.

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.

  • Jones, B. F. (2009). The burden of knowledge and the “death of the renaissance man”: Is innovation getting harder? The Review of Economic Studies, 76(1), 283–317.

    Article  MATH  Google Scholar 

  • Kabbedijk, J., Bezemer, C. P., Jansen, S., & Zaidman, A. (2015). Defining multi-tenancy: A systematic mapping study on the academic and the industrial perspective. Journal of Systems and Software, 100, 139–148.

    Article  Google Scholar 

  • Katila, R. (2002). New product search over time: Past ideas in their prime? Academy of Management Journal, 45, 995–1010.

    Article  Google Scholar 

  • Kim, D., Cerigo, D. B., Jeong, H., & Youn, H. (2016). Technological novelty profile and invention’s future impact. EPJ Data Science, 5(1), 1.

    Article  Google Scholar 

  • Kogan, L., Papanikolaou, D., Seru, A., & Stoffman, N. (2012). Technological innovation, resource allocation, and growth (No. w17769). National Bureau of Economic Research.

  • Lanjouw, J. O., Pakes, A., & Putnam, J. (1998). How to count patents and value intellectual property: The uses of patent renewal and application data. Journal of Industrial Economics, 46(4), 405–432.

    Article  Google Scholar 

  • Lanjouw, J. O., & Schankerman, M. (1997). Stylized facts of patent litigation: Value, scope and ownership (No. w6297). National Bureau of Economic Research.

  • Lanjouw, J. O., & Schankerman, M. (1999). The quality of ideas: Measuring innovation with multiple indicators (No. w7345). National Bureau of Economic Research.

  • Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: A window on competition. The RAND Journal of Economics, 13, 129–151.

  • Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441–465.

    Article  Google Scholar 

  • Lee, Y. S. (2000). The sustainability of university-industry research collaboration: An empirical assessment. The Journal of Technology Transfer, 25(2), 111–133.

    Article  MathSciNet  Google Scholar 

  • Lerner, J. (1994). The importance of patent scope: An empirical analysis. The RAND Journal of Economics, 25(2), 319–333.

  • Liu, K., Arthurs, J., Cullen, J., & Alexander, R. (2008). Internal sequential innovations: How does interrelatedness affect patent renewal? Research Policy, 37(5), 946–953.

    Article  Google Scholar 

  • Ljungberg, D., Bourelos, E., & McKelvey, M. (2013). Academic inventors, technological profiles and patent value: An analysis of academic patents owned by Swedish-based firms. Industry and Innovation, 20(5), 473–487.

    Article  Google Scholar 

  • Marco, A. C. (2007). The dynamics of patent citations. Economics Letters, 94(2), 290–296.

  • Merges, R. P., & Nelson, R. R. (1990). On the complex economics of patent scope. Columbia Law Review, 90(4), 839–916.

    Article  Google Scholar 

  • Moore, K. (2005). Worthless patents. Berkeley Technology Law Journal, 20(4), 1521–1552.

    Google Scholar 

  • Munari, F., & Oriani, R. (Eds.). (2011). The economic valuation of patents: Methods and applications. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Nagaoka, S. (2007). Assessing the R&D management of a firm in terms of speed and science linkage: Evidence from the US patents. Journal of Economics & Management Strategy, 16(1), 129–156.

    Article  MathSciNet  Google Scholar 

  • Narin, F. (1999). Tech-line background paper. Haddon Heights, NJ: CHI Research. Inc.

    Google Scholar 

  • Narin, F. (2000). Tech-line background paper. In J. Tidd (Ed.), From knowledge management to strategic competence (pp. 153–195). London: Imperial College Press.

    Google Scholar 

  • Nerkar, A. (2003). Old is gold? The value of temporal exploration in the creation of new knowledge. Management Science, 49, 211–229.

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development. (2009). OECD Patent Statistics Manual 2009. OECD.

  • Partha, D., & David, P. A. (1994). Toward a new economics of science. Research Policy, 23(5), 487–521.

    Article  Google Scholar 

  • Petruzzelli, A. M., Rotolo, D., & Albino, V. (2015). Determinants of patent citations in biotechnology: An analysis of patent influence across the industrial and organizational boundaries. Technological Forecasting and Social Change, 91, 208–221.

    Article  Google Scholar 

  • Reger, G., & Schmoch, U. (Eds.). (2013). Organisation of science and technology at the watershed: The academic and industrial perspective (Vol. 3). Berlin: Springer.

    Google Scholar 

  • Reitzig, M. (2003). What determines patent value? Insights from the semiconductor industry. Research Policy, 32(1), 13–26.

    Article  Google Scholar 

  • Reitzig, M. (2004). Improving patent valuations for management purposes—Validating new indicators by analyzing application rationales. Research Policy, 33(6), 939–957.

    Article  Google Scholar 

  • Rosenkopf, L., & Almeida, P. (2003). Overcoming local search through alliances and mobility. Management Science, 49(6), 751–766.

    Article  Google Scholar 

  • Salamudin, N., Bakar, R., Kamil Ibrahim, M., & Haji Hassan, F. (2010). Intangible assets valuation in the Malaysian capital market. Journal of Intellectual Capital, 11(3), 391–405.

    Article  Google Scholar 

  • Sampat, B. (2002). Private parts: Patents and academic research in the twentieth century. In Research symposium of the next generation of leaders in science and technology policy, pp. 22–23.

  • Sampat, B. N., Mowery, D. C., & Ziedonis, A. A. (2003). Changes in university patent quality after the Bayh-Dole act: A re-examination. International Journal of Industrial Organization, 21(9), 1371–1390.

    Article  Google Scholar 

  • Sapsalis, E., Pottelsberghe, Van, de la Potterie, B., & Navon, R. (2006). Academic versus industry patenting: An in-depth analysis of what determines patent value. Research Policy, 35(10), 1631–1645.

    Article  Google Scholar 

  • Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research Policy, 39(8), 1051–1059.

    Article  Google Scholar 

  • Schumpeter, J. A. (1934). The theory of economic development: An inquiry into profits, capital, credit, interest, and the business cycle (Vol. 55). Piscataway: Transaction Publishers.

    Google Scholar 

  • Singh, J. (2008). Distributed R&D, cross-regional knowledge integration and quality of innovative output. Research Policy, 37(1), 77–96.

    Article  MathSciNet  Google Scholar 

  • Smith, L. (1997). What’s the use of basic science? CERN-OPEN-99-011.

  • Sohn, S. Y., & Lee, M. (2012). Conjoint analysis of R&D contract agreements for industry-funded university research. The Journal of Technology Transfer, 37(4), 532–549.

    Article  Google Scholar 

  • Srinivasan, R., Lilien, G. L., & Rangaswamy, A. (2001). When being first is not enough: Network externalities and the survival of pioneers. Institute for the Study of Business Markets, the Pennsylvania State University, Report 4-2002.

  • Stern, S. (2004). Do scientists pay to be scientists? Management Science, 50(6), 835–853.

    Article  Google Scholar 

  • Sterzi, V. (2013). Patent quality and ownership: An analysis of UK faculty patenting. Research Policy, 42(2), 564–576.

    Article  Google Scholar 

  • Szu-chia, S. L. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.

    Article  Google Scholar 

  • Thomas, P. (1999). The effect of technological impact upon patent renewal decisions. Technology Analysis & Strategic Management, 11(2), 181–197.

    Article  Google Scholar 

  • Thomson, G. P. (1966). JJ Thomson, discoverer of the electron (No. 48). New York: Anchor Books.

    Google Scholar 

  • Tomala, F., & Sénéchal, O. (2004). Innovation management: A synthesis of academic and industrial points of view. International Journal of Project Management, 22(4), 281–287.

    Article  Google Scholar 

  • Tong, X., & Frame, J. (1994). Measuring national technological performance with patent claims data. Research Policy, 23(2), 133–141.

    Article  Google Scholar 

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand Journal of Economics, 21(1), 172–187.

    Article  Google Scholar 

  • Tria, F., Loreto, V., Servedio, V. D. P., & Strogatz, S. H. (2014). The dynamics of correlated novelties. Scientific Reports, 4, 5890.

    Article  Google Scholar 

  • Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.

    Article  Google Scholar 

  • Van Zeebroeck, N., de la Potterie, B. V. P., & Guellec, D. (2009). Claiming more: The increased voluminosity of patent applications and its determinants. Research Policy, 38(6), 1006–1020.

    Article  Google Scholar 

  • Verbeteen, F., & Vijn, P. (2006). Do strong brand pay-off? (No. 06-03). NRG Working Paper Series.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2016R1A2A1A05005270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Sohn, S.Y. What makes the first forward citation of a patent occur earlier?. Scientometrics 113, 279–298 (2017). https://doi.org/10.1007/s11192-017-2480-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2480-1

Keywords

JEL Classification

Navigation