Skip to main content
Log in

Two-phase edge outlier detection method for technology opportunity discovery

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This article introduces a method for identifying potential opportunities of innovation arising from the convergence of different technological areas, based on the presence of edge outliers in a patent citation network. Edge outliers are detected via the assessment of their centrality; pairs of patents connected by edge outliers are then analyzed for technological relatedness and past involvement in technological convergence. The pairs with the highest potential for future convergence are finally selected and their keywords combined to suggest new directions of innovation. We illustrate our method on a data set of US patents in the field of digital information and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3–13.

  • Bollen, K. A., & Jackman, R. W. (1990). Regression diagnostics: An expository treatment of outliers and influential cases. Modern Methods of Data Analysis, 13(4), 257–291.

    Google Scholar 

  • Chang, P., Wu, C., & Leu, H. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19.

    Article  Google Scholar 

  • Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C. H. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88(3), 863–883.

    Article  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore: JHU Press.

    MATH  Google Scholar 

  • Hacklin, F., Raurich, V., & Marxt, C. (2004). How incremental innovation becomes disruptive: The case of technology convergence. In Proceedings 2004 IEEE international engineering management conference (vol. 1, pp. 32–36).

  • Kim, B., Gazzola, G., Lee, J. M., Kim, D., Kim, K., & Jeong, M. K. (2014). Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics, 98(3), 1811–1825.

    Article  Google Scholar 

  • Kim, D., Lee, B., Lee, H. J., Lee, S. P., Moon, Y., & Jeong, M. K. (2012). Automated detection of influential patents using singular values. IEEE Transactions on Automation Science and Engineering, 9(4), 723–733.

    Article  Google Scholar 

  • Lee, C., Cho, Y., Seol, H., & Park, Y. (2012). A stochastic patent citation analysis approach to assessing future technological impacts. Technological Forecasting and Social Change, 79(1), 16–29.

    Article  Google Scholar 

  • Lee, Y., Kim, S. Y., Song, I., Park, Y., & Shin, J. (2013). Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis. Scientometrics, 100(1), 1–18.

    Google Scholar 

  • Lee, Y., Kim, S. Y., Song, I., Park, Y., & Shin, J. (2014). Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis. Scientometrics, 100(1), 227–244.

    Article  Google Scholar 

  • Lee, M., Lee, S., Kim, J., Seo, D., Kim, P., Jung, H., Lee, J., Kim, T., Koo, H. K., & Sung, W. K. (2011). Decision-making support service based on technology opportunity discovery model. In International Conference on U-and E-service, Science and Technology (pp. 263–268). Berlin: Springer.

  • Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481–497.

    Article  Google Scholar 

  • Liu, S., Liao, H., Pi, S., & Hu, J. (2011). Development of a patent retrieval and analysis platform-a hybrid approach. Expert Systems with Applications, 38(6), 7864–7868.

    Article  Google Scholar 

  • Ma, J., & Porter, A. L. (2015). Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics, 102(1), 811–827.

    Article  Google Scholar 

  • Madani, F., Daim, T., & Weng, C. (2017). ‘Smart building’ technology network analysis: Applying core–periphery structure analysis. International Journal of Management Science and Engineering Management, 12(1), 1–11.

  • Newman, M. E. J., & Girvan, M. (2003). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Park, H. S., Ree, J. J., & Kim, K. (2013). Identification of promising patents for technology transfers using TRIZ evolution trends. Expert Systems with Applications, 40(2), 736–743.

    Article  Google Scholar 

  • Petruzzelli, A. M. (2011). The impact of technological relatedness, prior ties, and geographical distance on university–industry collaborations: A joint-patent analysis. Technovation, 31(7), 309–319.

    Article  Google Scholar 

  • Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237–255.

    Article  Google Scholar 

  • Rodriguez, A., Kim, B., Lee, J. M., Coh, B. Y., & Jeong, M. K. (2015a). Graph kernel based measure for evaluating the influence of patents in a patent citation network. Expert Systems with Applications, 42, 1479–1486.

    Article  Google Scholar 

  • Rodriguez, A., Kim, B., Turkoz, M., Lee, J. M., Coh, B. Y., & Jeong, M. K. (2015b). New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network. Scientometrics, 103(2), 565–581.

    Article  Google Scholar 

  • Schuh, G., & Grawatsch, M. (2004). TRIZ-based technology intelligence. In Proceedings of the 16th international conference on management of technology. Anais eletrônicos. Washington: IAMOT (pp. 85–111).

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.

    Article  Google Scholar 

  • Strang, G. (2011). Introduction to linear algebra. Wellesley: Wellesley Cambridge Press.

    MATH  Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (4th ed.). Cambridge: Academic Press.

    MATH  Google Scholar 

  • Wang, W., & Cheung, C. (2011). A semantic-based intellectual property management system (SIPMS) for supporting patent analysis. Engineering Applications of Artificial Intelligence, 24(8), 1510–1520.

    Article  Google Scholar 

  • Winnink, J. J., & Tijssen, R. J. (2015). Early stage identification of breakthroughs at the interface of science and technology: Lessons drawn from a landmark publication. Scientometrics, 102(1), 113–134.

    Article  Google Scholar 

  • Yoon, J., & Kim, K. (2012). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445–461.

    Article  Google Scholar 

  • Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145–160.

    Article  Google Scholar 

  • Yoon, B., Park, I., & Coh, B. Y. (2014). Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287–303.

    Article  Google Scholar 

  • Zhang, H., Kiranyaz, S., & Gabbouj, M. (2016). Outlier edge detection using random graph generation models and applications. Technical reports, arXiv:1606.06447.

Download references

Acknowledgements

The authors thank the anonymous reviewers and editor for their helpful and constructive comments that greatly contributed to improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seon Jeong.

Appendices

Appendix 1

In this appendix, we added the results of the preliminary experiments for selecting the optimal K in phase 2. In Table 5, three outliers were highlighted with bold font.

Table 5 Results of the preliminary experiments for selecting the optimal K

Appendix 2

In this appendix, we share the numbers and titles of the patents that were selected in Table 1 (Table 6).

Table 6 Numbers and titles of the selected 20 patents from Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Gazzola, G., Yang, J. et al. Two-phase edge outlier detection method for technology opportunity discovery. Scientometrics 113, 1–16 (2017). https://doi.org/10.1007/s11192-017-2472-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2472-1

Keywords

Navigation