Advertisement

Scientometrics

, Volume 112, Issue 3, pp 1323–1341 | Cite as

Knowledge linked to museum specimen vouchers: measuring scientific production from a major biological collection in Colombia

  • Enrique Arbeláez-Cortés
  • Andrés R. Acosta-Galvis
  • Carlos DoNascimiento
  • Diana Espitia-Reina
  • Arturo González-Alvarado
  • Claudia A. Medina
Article

Abstract

Biological collections are sources of knowledge, particularly critical to understand life when they house specimens from megadiverse countries. However, the scientific value of biological collections is usually unknown because the lack of an explicit link between knowledge and specimens. Here we compiled 628 papers from 152 journals that used collection objects from the Colecciones Biológicas del Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia (IAvH-CB) as sources. The compilation was largely based on expert knowledge. However, to assess the performance of our method we compared our results with results obtained conducting automatic searches in academic databases. We calculated different metrics and depicted geographical, taxonomic, and bibliometric trends. We found that geographic coverage of the IAvH-CB objects used in the studies is largely regional or national. Taxonomically, we found records of 176 families in 61 orders of taxa, but there is large variation among the number of studies in different groups. The bibliometric analyses indicated that there is a growing trend in the number of publications and citations over the years, and that the citation number as well as the H index of this set of papers is comparable to the knowledge produced by major researchers in Colombia and of similar magnitude to that of the production of relatively small or medium sized collections in the USA. The compilation method used performed well, with broad coverage and an omission rate below 8%, compared with automated searches. However, we conclude that both approaches, expert knowledge and automated searches, are complementary. IAvH-CB are a massive source of scientific knowledge about Colombian biodiversity and they are instrumental for documenting basic issues about taxa in the country.

Keywords

Biodiversity Biorepositories Knowledge management Natural history museum South America Specimens 

JEL Code

Q57 

MSC Code

00-02 

Notes

Acknowledgements

We thank H. Mendoza Cifuentes, K. Borja, O. Orrego, J.C. Bello, and H. García from IAvH for the support they provided. A special acknowledge to Jhon W Miles, Donald C. Taphorn, and Terry Chesser; for their valuable comments and corrections, which improved this manuscript. We also thank one anonymous reviewer whose comments were useful to correct and make a better version of this work.

Supplementary material

11192_2017_2461_MOESM1_ESM.tif (19.1 mb)
Fig S1. Map depicting the network of collections contributing tissue samples to scientific papers in which IAvH-CT tissue samples were also included. Line thickness is proportional to the number of papers shared. (TIFF 19602 kb)

References

  1. Arbeláez-Cortés, E. (2013a). Describiendo especies: Un panorama de la biodiversidad Colombiana en el ámbito mundial. Acta Biologica Colombiana, 18(1), 165–178.Google Scholar
  2. Arbeláez-Cortés, E. (2013b). Knowledge of Colombian biodiversity: Published and indexed. Biodiversity and Conservation, 22(12), 2875–2906. doi: 10.1007/s10531-013-0560-y.CrossRefGoogle Scholar
  3. Arbeláez-Cortés, E., Torres, M. F., López-Álvarez, D., Palacio-Mejía, J. D., Mendoza, Á. M., & Medina, C. A. (2015). Colombian frozen biodiversity: 16 years of the tissue collection of the Humboldt Institute. Acta Biologica Colombiana, 20(2), 163–173.CrossRefGoogle Scholar
  4. Bradley, R. D., Bradley, L. C., Garner, H. J., & Baker, R. J. (2014). Assessing the value of natural history collections and addressing issues regarding long-term growth and care. BioScience, 64(12), 1150–1158. doi: 10.1093/biosci/biu166.CrossRefGoogle Scholar
  5. Carvalho, M. R. D., Bockmann, F. A., Amorim, D. S., & Brandão, C. R. F. (2008). Systematics must embrace comparative biology and evolution, not speed and automation. Evolutionary Biology, 35(2), 150–157. doi: 10.1007/s11692-008-9018-7.CrossRefGoogle Scholar
  6. Caycedo-Rosales, P., Laverde, O., & Arbeláez-Cortés, E. (2014). Nuevas especies de aves en Colombia: Uso de estudios multicriterio para su descubrimiento. In J. C. Bello, M. Báez, M. F. Gómez, O. Orrego, & L. Nägele (Eds.), Biodiversidad 2014: Estado y tendencias de la biodiversidad continental de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Google Scholar
  7. Clemann, N., Rowe, K. M. C., Rowe, K. C., Raadik, T., Gomon, M., Menkhorst, P., et al. (2014). Value and impacts of collecting vertebrate voucher specimens, with guidelines for ethical collection. Memoirs of Museum Victoria, 72, 141–151.CrossRefGoogle Scholar
  8. Collar, N. J. (2000). Collecting and conservation: Cause and effect. Bird Conservation International, 10, 1–15.CrossRefGoogle Scholar
  9. Congreso de la República de Colombia (1973). Ley 23 de 1973. Por la cual se conceden facultades extraordinarias al Presidente de la República para expedir el Código de Recursos Naturales y protección al medio ambiente y se dictan otras disposiciones. (pp. 3). Bogotá.Google Scholar
  10. Costello, M. J., May, R. M., & Stork, N. E. (2013). Can we name Earth’s species before they go extinct? Science, 339(6118), 413–416. doi: 10.1126/science.1230318.CrossRefGoogle Scholar
  11. Dalton, R. (2003). Natural history collections in crisis as funding is slashed. Nature, 423(6940), 575.Google Scholar
  12. Darrigan, G. (2012). Las colecciones biológicas: ¿Para qué? Boletín Biológica, 23, 28–31.Google Scholar
  13. De Moya-Anegón, F., & Herrero-Solana, V. (1999). Science in America Latina: A comparison of bibliometric and scientific-technical indicators. Scientometrics, 46(2), 299–320. doi: 10.1007/bf02464780.CrossRefGoogle Scholar
  14. Descamps, E., Sochacka, A., De Kegel, B., Van Loo, D., Van Hoorebeke, L., & Adriaens, D. (2014). Soft tissue discrimination with contrast agents using micro-CT scanning. Belgian Journal of Zoology, 144(1), 20–40.Google Scholar
  15. DoNascimiento, C., Cárdenas-Bautista, J.-S., Borja, K. G., González-Alvarado, A., & Medina, C. A. (2016). Illustrated and online catalog of type specimens of freshwater fishes in the Colección de Peces Dulceacuícolas of Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH-P), Colombia. Zootaxa, 4171(3), 401–438.CrossRefGoogle Scholar
  16. Donegan, T. M. (2008). New species and subspecies descriptions do not and should not always require a dead type specimen. Zootaxa, 1761, 3748. doi: 10.11646/%25x.Google Scholar
  17. Elsevier Scopus (2017). Scopus. https://www.elsevier.com/solutions/scopus. Accessed April 10, 2017.
  18. Eschmeyer, W. N., Fricke, R., & van der Laan, R. (Eds). (2014) Catalog of fishes: Genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Electronic version Accessed May 10, 2014.
  19. ESRI (2009). ArcGIS Desktop: Release 9.3. Redlands. CA: Environmental Systems Research Institute.Google Scholar
  20. Fernandez-Triana, J., Smith, M. A., Boudreault, C., Goulet, H., Hebert, P. D. N., Smith, A. C., et al. (2011). A poorly known high-latitude parasitoid wasp community: Unexpected diversity and dramatic changes through time. PLoS ONE, 6(8), e23719. doi: 10.1371/journal.pone.0023719.CrossRefGoogle Scholar
  21. Garfield, E. (1980). Bradford’s law and related statistical patterns. Essays of an Information Scientist, 4, 476–483.Google Scholar
  22. German Council of Science and Humanities. (2011). Recommendations on scientific collections as research infrastructures (p. 68). Berlín: German Council of Science and Humanities.Google Scholar
  23. Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69–115. doi: 10.1023/a:1010512628145.MathSciNetCrossRefGoogle Scholar
  24. Glänzel, W., Leta, J., & Thijs, B. (2006). Science in Brazil. Part 1: A macro-level comparative study. Scientometrics, 67(1), 67–86. doi: 10.1007/s11192-006-0055-7.CrossRefGoogle Scholar
  25. Global Biodiversity Information Facility (2012). GBIF: Global biodiversity information facility web page. http://www.gbif.org/. Accessed July 15, 2012.
  26. Google (2015a). Google Scholar. www.scholar.google.com. Accessed June 10, 2015.
  27. Google (2015b). LSU museum of natural science: Bird collection Google Scholar profile. https://scholar.google.com/citations?user=JdCwc3sAAAAJ. Accessed December 20, 2015.
  28. Google (2017). KU Ichthyology Biodiversity Institute: Google Scholar profile. https://scholar.google.com/citations?user=FdXNWeMAAAAJ&hl. Accessed May 10, 2017.
  29. Greaves, C. (2008). ConcApp V 5. Software Program for Windows. http://vlc.polyu.edu.hk/concordance/.
  30. Guralnick, R. P., Hill, A. W., & Lane, M. (2007). Towards a collaborative, global infrastructure for biodiversity assessment. Ecology Letters, 10(8), 663–672. doi: 10.1111/j.1461-0248.2007.01063.x.CrossRefGoogle Scholar
  31. Hawkins, M. T. R., Hofman, C. A., Callicrate, T., McDonough, M. M., Tsuchiya, M. T. N., Gutiérrez, E. E., et al. (2015). In-solution hybridization for mammalian mitogenome enrichment: pros, cons and challenges associated with multiplexing degraded DNA. Molecular Ecology Resources, 16(5), 1173–1188. doi: 10.1111/1755-0998.12448.CrossRefGoogle Scholar
  32. Hill, J. J., Chumchal, M. M., Drenner, R. W., Pinder, J. E., & Drenner, S. M. (2009). Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA. Environmental Monitoring and Assessment, 161(1), 509–516. doi: 10.1007/s10661-009-0764-5.Google Scholar
  33. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. doi: 10.1073/pnas.0507655102.CrossRefzbMATHGoogle Scholar
  34. Holmes, M. W., Hammond, T. T., Wogan, G. O. U., Walsh, R. E., LaBarbera, K., Wommack, E. A., et al. (2016). Natural history collections as windows on evolutionary processes. Molecular Ecology, 25(4), 864–881. doi: 10.1111/mec.13529.CrossRefGoogle Scholar
  35. Hykin, S. M., Bi, K., & McGuire, J. A. (2015). Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE, 10(10), e0141579. doi: 10.1371/journal.pone.0141579.CrossRefGoogle Scholar
  36. Inönü, E. (2003). The influence of cultural factors on scientific production. Scientometrics, 56(1), 137–146. doi: 10.1023/a:1021906925642.CrossRefGoogle Scholar
  37. Izquierdo, I. (2013). Los tesoros del investigador: las colecciones de Historia Natural como referencia del trabajo científico. In A. González & A. Baratas (Eds.), Museos y colecciones de Historia Natural: investigación educación y difusión (Segunda época), Memorias de la Real Sociedad Española de Historia Natural (Vol. Tomo XI, pp. 69–83). Madrid: Real Sociedad Española de Historia Natural.Google Scholar
  38. Kemp, C. (2015). Museums: The endangered dead. Nature, 518(7539), 292–294. doi: 10.1038/518292a.CrossRefGoogle Scholar
  39. Kovacic, M. (2009). Is the scientific value of a biological collection measurable? Zagreb, 18(1), 169–174.Google Scholar
  40. Kress, W. J., Heyer, W. R., Acevedo, P., Coddington, J., Cole, D., Erwin, T. L., et al. (1998). Amazonian biodiversity: Assessing conservation priorities with taxonomic data. Biodiversity and Conservation, 7(12), 1577–1587. doi: 10.1023/A:1008889803319.CrossRefGoogle Scholar
  41. Kuo, C. W., & Yang, Y. H. (2015). The bibliometric analysis of literature on museum studies. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 159–164. doi: 10.5194/isprsannals-II-5-W3-159-2015.CrossRefGoogle Scholar
  42. Lasso-Alcalá, O., Nunes, J. L. S., Lasso, C., Posada, J., Robertson, R., Piorski, N. M., et al. (2011). Invasion of the Indo-Pacific blenny Omobranchus punctatus (Perciformes: Blenniidae) on the Atlantic coast of Central and South America. Neotropical Ichthyology, 9(3), 571–578. doi: 10.1590/S1679-62252011000300010.CrossRefGoogle Scholar
  43. Lavoie, C. (2013). Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies. Perspectives in Plant Ecology, Evolution and Systematics, 15, 68–76. doi: 10.1016/j.ppees.2012.10.002.CrossRefGoogle Scholar
  44. Lawrence, S. (2001). Free online availability substantially increases a paper’s impact. Nature, 411, 521. doi: 10.1038/35079151.CrossRefGoogle Scholar
  45. Lorini, M. L., Paese, A., & Uezu, A. (2011). GIS and spatial analysis meet conservation: A promising synergy to address biodiversity issues. Natureza & Conservação, 9(2), 129–144.CrossRefGoogle Scholar
  46. Medina, C. A., Arbeláez-Cortés, E., Borja, K. G., González, F. A., DoNascimiento, C. L., Acosta-Galvis, A. R., et al. (2016). Las colecciones biológicas del Instituto Humboldt. In M. F. Gómez, L. A. Moreno, G. I. Andrade, & C. Rueda (Eds.), Biodiversidad 2015: Estado y tendencias de la biodiversidad continental de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Google Scholar
  47. Michán, L. (2011). Análisis bibliométrico de la producción sistemática en América Latina. Acta Biologica Colombiana, 16(2), 33–46.Google Scholar
  48. Michels, C., & Schmoch, U. (2012). The growth of science and database coverage. Scientometrics, 93(3), 831–846. doi: 10.1007/s11192-012-0732-7.CrossRefGoogle Scholar
  49. Microsoft (2010). Microsoft Access 2010. Software Program for Windows.Google Scholar
  50. Miller, R. J., Carroll, A. D., Wilson, T. P., & Shaw, J. (2009). Spatiotemporal analysis of three common wetland invasive plant species using herbarium specimens and geographic information systems. Castanea, 74(2), 133–145.CrossRefGoogle Scholar
  51. Ministerio de Ambiente y Desarrollo Sostenible (2013a). Decreto No. 1376 por el cual se reglamenta el permiso de recolección de especímenes de especies silvestres de la diversidad biológica con fines de investigación científica no comercial. Bogotá.Google Scholar
  52. Ministerio de Ambiente y Desarrollo Sostenible (2013b). Decreto No. 1375 por el cual se reglamentan las colecciones biológicas. Bogotá.Google Scholar
  53. Minteer, B. A., Collins, J. P., Love, K. E., & Puschendorf, R. (2014). Avoiding (re)extinction. Science, 344(6181), 260–261. doi: 10.1126/science.1250953.CrossRefGoogle Scholar
  54. Navarro, A. G., Peterson, A. T., & Gordillo-Martínez, A. (2003). Museums working together: The atlas of the birds of Mexico. Bulletin British Ornithologists’ Club, 123A, 207–225.Google Scholar
  55. Nudds, J. R., & Pettitt, C. W. (1997). The value and valuation of natural science collections. London: Geological Society of London.Google Scholar
  56. Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S., & Riccardi, G. (2015). Digitization of biodiversity collections reveals biggest data on biodiversity. BioScience, 69(5), 841–842. doi: 10.1093/biosci/biv104.CrossRefGoogle Scholar
  57. Paknia, O., Sh, H. R., & Koch, A. (2015). Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration. Organisms Diversity & Evolution, 15(3), 619–629. doi: 10.1007/s13127-015-0202-1.CrossRefGoogle Scholar
  58. Parker, P. G., Buckles, E. L., Farrington, H., Petren, K., Whiteman, N. K., Ricklefs, R. E., et al. (2011). 110 years of Avipoxvirus in the Galapagos Islands. PLoS ONE, 6(1), e15989. doi: 10.1371/journal.pone.0015989.CrossRefGoogle Scholar
  59. Ranking WEB de universidades (2015). Ranking of scientists in Colombian Institutions according to their Google Scholar citations public profiles. 5th edition. http://www.webometrics.info/es/node/70. Accessed December 20, 2015.
  60. República de Colombia (1978). Decreto 1608 Por el cual se reglamenta el Código Nacional de los Recursos Naturales Renovables y de Protección al Medio Ambiente y la Ley 23 de 1973 en materia de fauna silvestre (pp. 59).Google Scholar
  61. ResearchGate (2015). www.researchgate.net.
  62. Robbirt, K. M., Davy, A. J., Hutchings, M. J., & Roberts, D. L. (2011). Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. Journal of Ecology, 99(1), 235–241. doi: 10.1111/j.1365-2745.2010.01727.x.CrossRefGoogle Scholar
  63. Roskov, Y., Abucay, L., Orrell, T., Nicolson, D., Kunze, T., Culham, A., et al. (2015). Species 2000 & ITIS Catalogue of Life: 2015 Annual Checklist. http://www.catalogueoflife.org/. Accessed October 10, 2015.
  64. Shen, H. (2012). Chicago’s Field Museum cuts back on science. Nature, 492(7429). doi: 10.1038/nature.2012.12105.
  65. Sistema de Información sobre Biodiversidad de Colombia [SiB-Colombia] (2015). Portal de datos. http://www.sibcolombia.net/web/sib/home. Accessed November 10, 2015.
  66. Soacha, K., & Orrego, O. (2014). Colecciones biológicas. In J. C. Bello, M. Báez, M. F. Gómez, O. Orrego, & L. Nägele (Eds.), Biodiversidad 2014. Estado y tendencias de la biodiversidad continental en Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Google Scholar
  67. Specify Software Project. (2013). Specify 6,4,13. Lawrence, Kansas: Biodiversity Institute, University of Kansas.Google Scholar
  68. Suarez, A. V., & Tsutsui, N. D. (2004). The value of museum collections for research and society. BioScience, 54, 66–74. doi: 10.1641/0006-3568(2004)054[0066:TVOMCF]2.0.CO;2.CrossRefGoogle Scholar
  69. The Earl of Cranbrook. (1995). The scientific value of collections. The Biology Curator, 3, 7–32.Google Scholar
  70. The World Bank (2015). Data: Research and development expenditure (% of GDP) http://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS. Accessed May 28, 2016.
  71. Thomson Reuters (2013). EndNote X7. Software Program for Windows. http://endnote.com/productdetails.
  72. Thomson Reuters (2014). Web of science. http://wokinfo.com/. Accessed September 15, 2014.
  73. Thomson Reuters (2017). Web of science. http://wokinfo.com/. Accessed April 10, 2017.
  74. Turney, S., Cameron, E. R., Cloutier, C. A., & Buddle, C. M. (2015). Non-repeatable science: Assessing the frequency of voucher specimen deposition reveals that most arthropod research cannot be verified. Peer Journal. doi: 10.7717/peerj.1168.Google Scholar
  75. Wen, J., Ickert-Bond, S. M., Appelhans, M. S., Dorr, L. J., & Funk, V. A. (2015). Collections-based systematics: Opportunities and outlook for 2050. Journal of Systematics and Evolution, 53(6), 477–488. doi: 10.1111/jse.12181.CrossRefGoogle Scholar
  76. Winker, K., & Withrow, J. J. (2013). Natural history: Small collections make a big impact. Nature, 493, 480. doi: 10.1038/493480b.CrossRefGoogle Scholar
  77. Winston, J. E. (2007). Archives of a small planet: The significance of museum collections and museum based research in invertebrate taxonomy. Zootaxa, 1668, 47–54.Google Scholar
  78. Yates, T. L., Mills, J. N., Parmenter, C. A., Ksiazek, T. G., Parmenter, R. R., Vande Castle, J. R., et al. (2002). The ecology and evolutionary history of an emergent disease: Hantavirus pulmonary syndrome. BioScience, 52(11), 989–998. doi: 10.1641/0006-3568(2002)052[0989:teaeho]2.0.co;2.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Instituto de Investigación de Recursos Biológicos Alexander von HumboldtVilla de Leyva, BoyacáColombia
  2. 2.Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de CienciasUniversidad Industrial de SantanderBucaramanga, SantanderColombia
  3. 3.Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Instituto de BiociênciasUniversidade Federal de Mato GrossoBoa Esperança, CuiabáBrazil

Personalised recommendations