Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks

Abstract

This study assesses the knowledge-building dynamics of emerging technologies, their participating country-level actors, and their interrelations. We examine research on induced pluripotent stem (iPS) cells, a recently discovered stem cell species. Compared to other studies, our approach conflates the totality of publications and patents of a field, and their references, into single “techno-scientific networks” across intellectual bases (IB) and research fronts (RF). Diverse mapping approaches—co-citation, direct citation, and bibliographic coupling networks—are used, driven by the problems tackled by iPS cell researchers. Besides the study of the field of iPS cells as a whole, we assessed the roles of relevant countries in terms of “knowledge exploration,” “knowledge nurturing,” “knowledge exploitation,” and cognitive content. The results show that a fifth of nodes in IB and edges in RF interconnect science (S) and technology (T). S and T domains tell different, yet complementing stories: S overstresses upstream activities, and T captures the increasing influential role of application domains and general technologies. Both S and T reflect the path-dependent nature of iPS cells in embryonic stem cell technologies. Building on the feedback between IB and RF, we examine the dominating role of the United States. Japan, the pioneer, falls behind in quantity, yet its global influence remains intact. New entrants, such as China, are advancing rapidly, yet, cognitively, the bulk of efforts are still upstream. Our study demonstrates the need for bibliometric assessment studies to account for S&T co-evolution. The multiple data source-based, integrated bibliometric approaches of this study are initial efforts toward this direction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alkemade, F., & Suurs, R. A. (2012). Patterns of expectations for emerging sustainable technologies. Technological Forecasting and Social Change, 79(3), 448–456.

    Article  Google Scholar 

  2. Anaya-Ruiz, M., & Perez-Santos, M. (2015). Innovation status of gene therapy for breast cancer. Asian Pacific Journal of Cancer Prevention, 16(9), 4133–4136.

    Article  Google Scholar 

  3. Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. New York: Simon and Schuster.

    Google Scholar 

  4. Ávila-Robinson, A. (2013). Understanding the dynamics of emerging technologies through knowledge structures: The case of micro/nanotechnologies. Tokyo Institute of Technology (unpublished dissertation).

  5. Ávila-Robinson, A., & Miyazaki, K. (2013a). Evolutionary paths of change of emerging nanotechnological innovation systems—The case of ZnO nanostructures. Scientometrics, 95(3), 829–849.

    Article  Google Scholar 

  6. Ávila-Robinson, A., & Miyazaki, K. (2013b). Dynamics of scientific knowledge bases as proxies for discerning technological emergence—The case of MEMS/NEMS technologies. Technological Forecasting and Social Change, 80(6), 1071–1084.

    Article  Google Scholar 

  7. Ávila-Robinson, A., & Miyazaki, K. (2014). Assessing nanotechnology potentials: interplay between the paths of knowledge evolution and the patterns of competence building. International Journal of Technology Intelligence and Planning, 10(1), 1–28.

    Article  Google Scholar 

  8. Ávila-Robinson, A., & Sengoku, S. (2017). Multilevel exploration of the realities of interdisciplinary research centers for the management of knowledge integration. Technovation. doi:10.1016/j.technovation.2017.01.003.

  9. Barfoot, J., Kemp, E., Doherty, K., Blackburn, C., Sengoku, S., van Servellen, A., et al. (2013). Stem cell research: Trends and perspectives on the evolving international landscape. Amsterdam: Elsevier BV.

    Google Scholar 

  10. Bengisu, M., & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835–844.

    Article  Google Scholar 

  11. Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sandén, B., & Truffer, B. (2015). Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, 16, 51–64.

    Article  Google Scholar 

  12. Birkinshaw, J., Bessant, J., & Delbridge, R. (2007). Finding, forming, and performing: Creating networks for discontinuous innovation. California Management Review, 49(3), 67–84.

    Article  Google Scholar 

  13. Björk, B.-C., & Solomon, D. (2013). The publishing delay in scholarly peer-reviewed journals. Journal of Informetrics, 7(4), 914–923.

    Article  Google Scholar 

  14. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.

  15. Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2013). Analyzing social networks. Thousand Oaks, CA: SAGE Publications Limited.

    Google Scholar 

  16. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  17. Bousfield, D., McEntyre, J., Velankar, S., Papadatos, G., Bateman, A., & Cochrane, G., et al. (2016). Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources. F1000Research. doi:10.12688/f1000research.7911.1.

  18. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.

    Article  Google Scholar 

  19. Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  20. Breschi, S., Malerba, F., & Orsenigo, L. (2000). Technological regimes and schumpeterian patterns of innovation. The Economic Journal, 110(463), 388–410.

    Article  Google Scholar 

  21. Callaert, J., Grouwels, J., & Van Looy, B. (2012). Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references. Scientometrics, 91(2), 383–398.

    Article  Google Scholar 

  22. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  23. Chen, S.-H., Huang, M.-H., & Chen, D.-Z. (2012). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099–1110.

    Article  Google Scholar 

  24. Chen, C., & Leydesdorff, L. (2014). Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. Journal of the Association for Information Science and Technology, 65(2), 334–351.

    Article  Google Scholar 

  25. Chiang, S.-Y. (2012). An application of Lotka–Volterra model to Taiwan’s transition from 200 mm to 300 mm silicon wafers. Technological Forecasting and Social Change, 79(2), 383–392.

    Article  Google Scholar 

  26. Cobo, M., López-Herrera, A., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62, 1382–1402.

    Article  MATH  Google Scholar 

  27. Consoli, D., & Ramlogan, R. (2011). Patterns of organization in the development of medical know-how: The case of glaucoma research. Industrial and Corporate Change, 21(2), 315–343.

    Article  Google Scholar 

  28. Cozzens, S., Gatchair, S., Kang, J., Kim, K.-S., Lee, H. J., Ordóñez, G., et al. (2010). Emerging technologies: quantitative identification and measurement. Technology Analysis and Strategic Management, 22(3), 361–376.

    Article  Google Scholar 

  29. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.

    Article  Google Scholar 

  30. David, P. A. (1994). Why are institutions the ‘carriers of history’?: Path dependence and the evolution of conventions, organizations and institutions. Structural Change and Economic Dynamics, 5(2), 205–220.

    Article  Google Scholar 

  31. David, P. A., & Foray, D. (1995). Accessing and expanding the science and technology knowledge base. STI Review, No. 16. Paris: OECD.

  32. Day, G. S., Schoemaker, P. J., & Gunther, R. E. (2004). Wharton on managing emerging technologies. Hoboken, NJ: Wiley.

    Google Scholar 

  33. De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek. New York, NY: Cambridge University Press.

    Google Scholar 

  34. Ebert, A. D., Yu, J., Rose, F. F., Mattis, V. B., Lorson, C. L., Thomson, J. A., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280.

    Article  Google Scholar 

  35. Fenn, J., & Raskino, M. (2008). Mastering the hype cycle: how to choose the right innovation at the right time. Boston: Harvard Business Press.

    Google Scholar 

  36. Franco, L. A., Meadows, M., & Armstrong, S. J. (2013). Exploring individual differences in scenario planning workshops: A cognitive style framework. Technological Forecasting and Social Change, 80(4), 723–734.

    Article  Google Scholar 

  37. Galibert, O., Rosset, S., Tannier, X., & Grandry, F., (2010). Hybrid citation extraction from patents. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, S. Piperidis, M. Rosner, D. Tapias (Eds.), LREC 2010, seventh international conference on language resources and evaluation, Valleta, Malta.

  38. Garber, K. (2015). RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nature Biotechnology, 33(9), 890–891.

    Article  Google Scholar 

  39. Hekkert, M. P., & Negro, S. O. (2009). Functions of innovation systems as a framework to understand sustainable technological change: Empirical evidence for earlier claims. Technological Forecasting and Social Change, 76(4), 584–594.

    Article  Google Scholar 

  40. Hilgartner, S., & Lewenstein, B. (2004). The speculative world of emerging technologies (unpublished work).

  41. Ho, J.-Y., & O’Sullivan, E. (2017). Strategic standardisation of smart systems: A roadmapping process in support of innovation. Technological Forecasting and Social Change, 115, 301–312.

    Article  Google Scholar 

  42. Hung, S.-C., & Chu, Y.-Y. (2006). Stimulating new industries from emerging technologies: Challenges for the public sector. Technovation, 26(1), 104–110.

    Article  Google Scholar 

  43. Inoue, H., Nagata, N., Kurokawa, H., & Yamanaka, S. (2014). iPS cells: A game changer for future medicine. The EMBO Journal, 33(5), 409–417.

    Article  Google Scholar 

  44. Jacobsson, S. (2008). The emergence and troubled growth of a ‘biopower’innovation system in Sweden. Energy Policy, 36(4), 1491–1508.

    Article  Google Scholar 

  45. Jansen, D., von Görtz, R., & Heidler, R. (2010). Knowledge production and the structure of collaboration networks in two scientific fields. Scientometrics, 83(1), 219–241.

    Article  Google Scholar 

  46. Jarneving, B. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics, 1(4), 287–307.

    Article  Google Scholar 

  47. Kauffman, S., & Macready, W. (1995). Technological evolution and adaptive organizations: Ideas from biology may find applications in economics. Complexity, 1(2), 26–43.

    MathSciNet  Article  Google Scholar 

  48. Keller, J., & Heiko, A. (2014). The influence of information and communication technology (ICT) on future foresight processes—Results from a Delphi survey. Technological Forecasting and Social Change, 85, 81–92.

    Article  Google Scholar 

  49. Kissin, I. (2015). Scientometrics of drug discovery efforts: Pain-related molecular targets. Drug Design, Development and Therapy, 9(1), 3393–3404.

    Article  Google Scholar 

  50. Krafft, J., Quatraro, F., & Saviotti, P. P. (2011). The knowledge-base evolution in biotechnology: A social network analysis. Economics of Innovation and New Technology, 20(5), 445–475.

    Article  Google Scholar 

  51. Kukk, P., Moors, E., & Hekkert, M. (2015). The complexities in system building strategies—the case of personalized cancer medicines in England. Technological Forecasting and Social Change, 98, 47–59.

    Article  Google Scholar 

  52. Kuusi, O., & Meyer, M. (2007). Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm. Scientometrics, 70(3), 759–777.

    Article  Google Scholar 

  53. Larédo, P., Robinson, D. K., Delemarle, A., Lagnau, A., Revollo, M., & Villard, L. (2015). Mapping and characterising the dynamics of emerging technologies to inform policy. Final Report IFRIS Institut Francilien Recherche Innovation Société, Project No. ANR-10-ORA-007.

  54. Lee, P.-C., & Su, H.-N. (2011). Quantitative mapping of scientific research—the case of electrical conducting polymer nanocomposite. Technological Forecasting and Social Change, 78(1), 132–151.

    Article  Google Scholar 

  55. Leydesdorff, L., & Rafols, I. (2011). Local emergence and global diffusion of research technologies: An exploration of patterns of network formation. Journal of the American Society for Information Science and Technology, 62(5), 846–860.

    Article  Google Scholar 

  56. Lopez, P. (2009). GROBID: Combining automatic bibliographic data recognition and term extraction for scholarship publications. In Proceedings of the 13th European conference on digital library (ECDL), Corfu, Greece.

  57. Lopez, P. (2010). Automatic extraction and resolution of bibliographical references in patent documents. In H. Cunningham, A. Hanbury, & S. Rüger (Eds.), Advances in multidisciplinary retrieval (pp. 120–135). Berlin: Springer.

    Google Scholar 

  58. Malerba, F. (2005). Sectoral systems: How and why innovation differs across sectors. In J. Fagerberg, D. C. Mowery, & R. R. Nelson (Eds.), The Oxford handbook of innovation. New York: Oxford University Press.

    Google Scholar 

  59. March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71–87.

    Article  Google Scholar 

  60. Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 37(4), 596–615.

    Article  Google Scholar 

  61. Martínez, C. (2011). Patent families: When do different definitions really matter? Scientometrics, 86(1), 39–63.

    MathSciNet  Article  Google Scholar 

  62. McCallum, A. K. (2002). MALLET: A machine learning for language toolkit. http://mallet.cs.umass.edu.

  63. Medcof, J. W. (2010). Exploration, exploitation and technology management. International Journal of Technology Intelligence and Planning, 6(4), 301–316.

    Article  Google Scholar 

  64. Metcalfe, J. S. (2002). Knowledge of growth and the growth of knowledge. Journal of Evolutionary Economics, 12(1–2), 3–15.

    Article  Google Scholar 

  65. Metcalfe, J. S., James, A., & Mina, A. (2005). Emergent innovation systems and the delivery of clinical services: The case of intra-ocular lenses. Research Policy, 34(9), 1283–1304.

    Article  Google Scholar 

  66. Meyer, M. (2000). What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 49(1), 93–123.

    Article  Google Scholar 

  67. Michel, J., & Bettels, B. (2001). Patent citation analysis. A closer look at the basic input data from patent search reports. Scientometrics, 51(1), 185–201.

    Article  Google Scholar 

  68. Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36(5), 789–806.

    Article  Google Scholar 

  69. Miyazaki, K. (1995). Building competences in the firm: Lessons from Japanese and European Optoelectronics. New York: St. Martin’s Press.

    Google Scholar 

  70. Momeni, A., & Rost, K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104, 16–29.

    Article  Google Scholar 

  71. Morlacchi, P., & Nelson, R. R. (2011). How medical practice evolves: Learning to treat failing hearts with an implantable device. Research Policy, 40(4), 511–525.

    Article  Google Scholar 

  72. Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403.

    Article  Google Scholar 

  73. Nanba, H., Anzen, N., & Okumura, M. (2008). Automatic extraction of citation information in Japanese patent applications. International Journal on Digital Libraries, 9(2), 151–161.

    Article  Google Scholar 

  74. Neal, H. A., Smith, T. L., & McCormick, J. B. (2008). Beyond Sputnik: US Science policy in the 21st century. Ann Arbor, MI: The University of Michigan Press.

    Google Scholar 

  75. Nelson, R. R. (2004). The market economy, and the scientific commons. Research Policy, 33(3), 455–471.

    Article  Google Scholar 

  76. Nelson, R. R., Buterbaugh, K., Perl, M., & Gelijns, A. (2011). How medical know-how progresses. Research Policy, 40(10), 1339–1344.

    Article  Google Scholar 

  77. NIH. (2017). NIH stem cell information home page. In stem cell information [World Wide Web site]. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2016 [cited January 19, 2017]. http://stemcells.nih.gov/info/basics/1.htm

  78. Perez-Santos, M., Anaya-Ruiz, M., & Bandala, C. (2017). Contribution of Latin American countries to cancer research and patent generation: Recent patents. Recent Patents on Anti-Cancer Drug Discovery, 12(1), 81–93.

    Article  Google Scholar 

  79. Persson, O. (1994). The intellectual base and research fronts of JASIS 1986–1990. Journal of the American Society for Information Science, 45(1), 31–38.

    Article  Google Scholar 

  80. Porter, A. L., & Cunningham, S. W. (2004). Tech mining: Exploiting new technologies for competitive advantage. Hoboken, NJ: Wiley.

    Google Scholar 

  81. Ramlogan, R., & Consoli, D. (2008). Knowledge, understanding and the dynamics of medical innovation. Munich Personal RePEc Archive MPRA Paper No. 9112.

  82. Robinson, D. K., Huang, L., Guo, Y., & Porter, A. L. (2013). Forecasting innovation pathways (FIP) for new and emerging science and technologies. Technological Forecasting and Social Change, 80(2), 267–285.

    Article  Google Scholar 

  83. Rosenkopf, L. (2000). Managing dynamic knowledge networks. In G. S. Day, P. J. Schoemaker, & R. E. Gunther (Eds.), Wharton on managing emerging technologies (pp. 337–357). New York: Wiley.

    Google Scholar 

  84. Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843.

    Article  Google Scholar 

  85. Saviotti, P. P. (2007). On the dynamics of generation and utilisation of knowledge: The local character of knowledge. Structural Change and Economic Dynamics, 18(4), 387–408.

    Article  Google Scholar 

  86. Schiebel, E. (2012). Visualization of research fronts and knowledge bases by three-dimensional areal densities of bibliographically coupled publications and co-citations. Scientometrics, 91(2), 557–566.

    Article  Google Scholar 

  87. Schmoch, U. (2007). Double-boom cycles and the comeback of science-push and market-pull. Research Policy, 36(7), 1000–1015.

    Article  Google Scholar 

  88. Scott, C. T., McCormick, J. B., DeRouen, M. C., & Owen-Smith, J. (2011). Democracy derived? New trajectories in pluripotent stem cell research. Cell, 145(6), 820–826.

    Article  Google Scholar 

  89. Sengoku, S. (2015). Innovation and commercialisation of induced pluripotent stem cells. In A. A. Vertès, N. Qureshi, A. I. Caplan, & E. B. Lee (Eds.), Stem cells in regenerative medicine: Science, regulation and business strategies (pp. 423–446). West Sussex, UK: Wiley.

    Google Scholar 

  90. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.

    Article  Google Scholar 

  91. Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2011). Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technological Forecasting and Social Change, 78(2), 274–282.

    Article  Google Scholar 

  92. Sternitzke, C. (2009). Patents and publications as sources of novel and inventive knowledge. Scientometrics, 79(3), 551–561.

    Article  Google Scholar 

  93. Suzuki, J., Gemba, K., Tamada, S., Yasaki, Y., & Goto, A. (2006). Analysis of propensity to patent and science-dependence of large Japanese manufacturers of electrical machinery. Scientometrics, 68(2), 265–288.

    Article  Google Scholar 

  94. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  Google Scholar 

  95. Takeda, Y., & Kajikawa, Y. (2009). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics, 78(3), 543–558.

    Article  Google Scholar 

  96. Tamada, S., Naito, Y., Kodama, F., Gemba, K., & Suzuki, J. (2006). Significant difference of dependence upon scientific knowledge among different technologies. Scientometrics, 68(2), 289–302.

    Article  Google Scholar 

  97. Tushman, M. L., & O’Reilly, C. A. (1996). The ambidextrous organizations: Managing evolutionary and revolutionary change. California Management Review, 38(4), 8–30.

    Article  Google Scholar 

  98. Upham, S. P., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38.

    Article  Google Scholar 

  99. Van Den Besselaar, P., & Heimeriks, G. (2006). Mapping research topics using word-reference co-occurrences: A method and an exploratory case study. Scientometrics, 68(3), 377–393.

    Article  Google Scholar 

  100. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  101. Van Merkerk, R. O., & Robinson, D. K. (2006). Characterizing the emergence of a technological field: Expectations, agendas and networks in Lab-on-a-chip technologies. Technology Analysis and Strategic Management, 18(3–4), 411–428.

    Article  Google Scholar 

  102. Van Merkerk, R. O., & Smits, R. E. (2008). Tailoring CTA for emerging technologies. Technological Forecasting and Social Change, 75(3), 312–333.

    Article  Google Scholar 

  103. Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.

    Article  Google Scholar 

  104. Walsh, S. T. (2004). Roadmapping a disruptive technology: A case study: The emerging microsystems and top-down nanosystems industry. Technological Forecasting and Social Change, 71(1), 161–185.

    Article  Google Scholar 

  105. Watatani, K., Xie, Z., Nakatsuji, N., & Sengoku, S. (2013). Global competencies of regional stem cell research: Bibliometrics for investigating and forecasting research trends. Regenerative Medicine, 8(5), 659–668.

    Article  Google Scholar 

  106. Whitesides, G. (2010). Solving problems. Lab on a Chip, 10(18), 2317–2318.

    Article  Google Scholar 

  107. Wirth, S., & Markard, J. (2011). Context matters: How existing sectors and competing technologies affect the prospects of the Swiss Bio-SNG innovation system. Technological Forecasting and Social Change, 78(4), 635–649.

    Article  Google Scholar 

  108. Yan, E. (2014). Research dynamics: Measuring the continuity and popularity of research topics. Journal of Informetrics, 8(1), 98–110.

    Article  Google Scholar 

  109. Ziman, J. (2003). Technological innovation as an evolutionary process. Cambridge: Cambridge University Press.

    Google Scholar 

  110. Zitt, M., Lelu, A., & Bassecoulard, E. (2011). Hybrid citation-word representations in science mapping: Portolan charts of research fields? Journal of the American Society for Information Science and Technology, 62(1), 19–39.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor and anonymous reviewers for their helpful comments. This work was financially supported by MEXT/JSPS World Premier International Research Center (WPI) Initiative [AAR] and by MEXT/JSPS Kakenhi Grant No. 26301022 [AAR, SS] (Project leader Prof. Shintaro Sengoku). Initial stages of this study were supported by Cabinet Office of Japan/JSPS Funding Program for World-Leading Next-Generation Innovative R&D on Science and Technology (NEXT Program, Grant Number LZ009) [AAR, SS]. An earlier version of this manuscript was presented at the Portland International Center for Management of Engineering and Technology (PICMET) 2014 conference (Portland, US). All remaining errors are our own.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfonso Ávila-Robinson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ávila-Robinson, A., Sengoku, S. Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks. Scientometrics 112, 1691–1720 (2017). https://doi.org/10.1007/s11192-017-2436-5

Download citation

Keywords

  • Techno-scientific networks
  • Knowledge-building
  • Dynamics
  • Emerging technologies
  • Stem cells