, Volume 112, Issue 1, pp 383–402 | Cite as

Sleeping beauties in meme diffusion

  • Leihan Zhang
  • Ke Xu
  • Jichang Zhao


A sleeping beauty in diffusion indicates that certain information, whether an idea or innovation, will experience a hibernation period before it undergoes a sudden spike of popularity, and this pattern is found widely in the citation history of scientific publications. However, in this study, we demonstrate that the sleeping beauty is an interesting and unexceptional phenomenon in information diffusion; more inspiring is that there exists two consecutive sleeping beauties in the entire lifetime of a meme’s propagation, which suggests that the information, including scientific topics, search queries or Wikipedia entries, which we call memes, will go unnoticed for a period and suddenly attract some attention, and then it falls asleep again and later wakes up with another unexpected popularity peak. Further exploration of this phenomenon shows that the intervals between two wake-ups follow an exponential distributions, both the rising and falling stage lengths, follow power law distributions, and the second wake-up tends to reach its peak in a shorter period of time. In addition, the total volumes of the two wake-ups have positive correlations. Taking these findings into consideration, an upgraded Bass model is presented to well describe the diffusion dynamics of memes on different media. Our results can help understand the common mechanism behind the propagation of different memes and are instructive towards locating the tipping point in marketing or in finding innovative publications in science.


Sleeping beauty Delayed recognition Bass model Popularity simulation Meme diffusion 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 71501005, 71531001, and 61421003) and the fund of the State Key Lab of Software Development Environment (Grant Nos. SKLSDE-2017ZX-05 and SKLSDE-2015ZX-28). ZJC thanks the support from the research foundation of graduate education and development in Beihang Unversity. We also thank Ms. Xiaoqian Hu for her valuable suggestions.


  1. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.CrossRefzbMATHGoogle Scholar
  2. Bauckhage, C. (2011). Insights into internet memes. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, ICWSM-11 (pp. 42–49).Google Scholar
  3. Bauckhage, C., Kersting, K., & Hadiji, F. (2013). Mathematical models of fads explain the temporal dynamics of internet memes. In ICWSM (pp. 22–30).Google Scholar
  4. Bentley, R. A., Garnett, P., O’Brien, M. J., & Brock, W. A. (2012). Word diffusion and climate science. PLoS ONE, 7(11), 1–9.CrossRefGoogle Scholar
  5. Bornmann, L., Leydesdorff, L., & Wang, J. (2014). How to improve the prediction based on citation impact percentiles for years shortly after the publication date? Journal of Informetrics, 8(1), 175–180.CrossRefGoogle Scholar
  6. Braun, T., Glnzel, W., & Schubert, A. (2010). On sleeping beauties, princes and other tales of citation distributions. Research Evaluation, 19(3), 195–202.CrossRefGoogle Scholar
  7. Burrell, L. Q. (2005). Are “sleeping beauties” to be expected? Scientometrics, 65(3), 381–389.CrossRefGoogle Scholar
  8. Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.CrossRefGoogle Scholar
  9. Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334(6060), 1269–1272.CrossRefGoogle Scholar
  10. Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M, & Leskovec, J. (2014). Can cascades be predicted? In Proceedings of the 23rd International Conference on World Wide Web (pp. 925–936). ACM.Google Scholar
  11. Coscia, M. (2013). Competition and success in the meme pool: A case study on In Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media, AAAI (pp. 100–109).Google Scholar
  12. Coscia, M. (2014). Average is boring: How similarity kills a meme’s success. Scientific Reports, 4, 6477.CrossRefGoogle Scholar
  13. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  14. Garfield, E. (1980). Premature discovery or delayed recognition-why. Current Contents, 21, 5–10.Google Scholar
  15. Garfield, E. (1989). Essays of an information scientist: Creativity, delayed recognition, and other essays. Current Contents, 23, 3–9.Google Scholar
  16. Gleeson, J. P., Ward, J. A., O’Sullivan, K. P., & Lee, W. T. (2014). Competition-induced criticality in a model of meme popularity. Physical Review Letters, 112(048), 701.Google Scholar
  17. Gleeson, J. P., O’Sullivan, K. P., Baños, R. A., & Moreno, Y. (2016). Determinants of meme popularity. Physical Review X, 6, 021019.CrossRefGoogle Scholar
  18. Glnzel, W., Schlemmer, B., & Thijs, B. (2005). Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon. Scientometrics, 58(3), 571–586.CrossRefGoogle Scholar
  19. Graus, D., Odijk, D., & de Rijke, M. (2017). The birth of collective memories: Analyzing emerging entities in text streams. arXiv preprint arXiv:1701.04039.
  20. Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences, 112(24), 7426–7431.CrossRefGoogle Scholar
  21. Kristoufek, L. (2013). Bitcoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific Reports, 3, 3415.CrossRefGoogle Scholar
  22. Lachance, C., & Larivire, V. (2014). On the citation lifecycle of papers with delayed recognition. Journal of Informetrics, 8(4), 863–872.CrossRefGoogle Scholar
  23. Lansdall-Welfare, T., Sudhahar, S., Thompson, J., Lewis, J., Team, F. N., & Cristianini, N. (2017). Content analysis of 150 years of british periodicals. Proceedings of the National Academy of Sciences, 114(4), E457–E465. doi: 10.1073/pnas.1606380114.CrossRefGoogle Scholar
  24. LaRowe, G., Ambre, S., Burgoon, J., Ke, W., & Brner, K. (2008). The scholarly database and its utility for scientometrics research. Scientometrics, 79(2), 219–234.CrossRefGoogle Scholar
  25. Leskovec, J., Backstrom, L., & Kleinberg, J. (2009). Meme-tracking and the dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09 (pp. 497–506). New York: ACM.Google Scholar
  26. Li, J. (2013). Citation curves of “all-elements-sleeping-beauties”: “flash in the pan” first and then “delayed recognition”. Scientometrics, 100(2), 595–601.CrossRefGoogle Scholar
  27. Li, J., & Ye, F. Y. (2012). The phenomenon of all-elements-sleeping-beauties in scientific literature. Scientometrics, 92(3), 795–799.CrossRefGoogle Scholar
  28. Li, J., Shi, D., Zhao, S. X., & Ye, F. Y. (2014). A study of the heartbeat spectra for sleeping beauties. Journal of Informetrics, 8(3), 493–502.CrossRefGoogle Scholar
  29. Light, R. P., Polley, David Eand, & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101(2), 1535–1551.CrossRefGoogle Scholar
  30. Marx, W. (2014). The Shockley–Queisser paper a notable example of a scientific sleeping beauty. Annalen der Physik, 526(5–6), A41–A45.CrossRefGoogle Scholar
  31. Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069–1086.CrossRefGoogle Scholar
  32. Ohba, N., & Nakao, K. (2012). Sleeping beauties in ophthalmology. Scientometrics, 93(2), 253–264.CrossRefGoogle Scholar
  33. Palshikar, G. (2009). Simple algorithms for peak detection in time-series. In Proceedings of 1st International Conference Advanced Data Analysis, Business Analytics and Intelligence (pp. 1–13).Google Scholar
  34. Redner, S. (2005). Citation statistics from 110 Years of Physical Review. Physics Today, 58(6), 49–54.CrossRefGoogle Scholar
  35. Sanl, C., & Lambiotte, R. (2015). Local variation of hashtag spike trains and popularity in twitter. PLoS ONE, 10(7), e0131704.CrossRefGoogle Scholar
  36. Sasahara, K., Hirata, Y., Toyoda, M., Kitsuregawa, M., & Aihara, K. (2013). Quantifying collective attention from tweet stream. PLoS ONE, 8(4), 1–10.CrossRefGoogle Scholar
  37. Senz-Royo, C., Gracia-Lzaro, C., & Moreno, Y. (2015). The role of the organization structure in the diffusion of innovations. PLoS ONE, 10(5), 1–13.Google Scholar
  38. Shifman, L. (2012). An anatomy of a youtube meme. New Media & Society, 14(2), 187–203.CrossRefGoogle Scholar
  39. Spitzberg, B. H. (2014). Toward a model of meme diffusion (M3D). Communication Theory, 24(3), 311–339.CrossRefGoogle Scholar
  40. Van Raan, A. F. (2004). Sleeping beauties in science. Scientometrics, 59(3), 461–466.Google Scholar
  41. van Raan, A. F. J. (2015). Dormitory of physical and engineering sciences: Sleeping beauties may be sleeping innovations. PLoS ONE, 10(10), e0139786.CrossRefGoogle Scholar
  42. Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.CrossRefGoogle Scholar
  43. Wang, S., Yan, Z., Hu, X., Yu, P. S., & Li, Z. (2015). Burst time prediction in cascades. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence, AAAI (pp. 325–331).Google Scholar
  44. Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Scientific Reports, 2, 335.CrossRefGoogle Scholar
  45. Weng, L., Menczer, F., & Ahn, Y. Y. (2013). Virality prediction and community structure in social networks. Scientific Reports, 3, 2522.CrossRefGoogle Scholar
  46. Weng, L., Menczer, F., & Ahn, Y. Y. (2014). Predicting successful memes using network and community structure. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, ICWSM-14 (pp. 535–544).Google Scholar
  47. Yoshida, M., Arase, Y., Tsunoda, T., & Yamamoto, M. (2015). Wikipedia page view reflects web search trend. In Proceedings of the Web Science Conference (pp. 1–2).Google Scholar
  48. Yu, L., Cui, P., Wang, F., Song, C., & Yang, S. (2017). Uncovering and predicting the dynamic process of information cascades with survival model. Knowledge and information systems, 50(2), 633–659.CrossRefGoogle Scholar
  49. Zhang, L., Zhao, J., & Xu, K. (2016). Who creates trends in online social media: The crowd or opinion leaders? Journal of Computer-Mediated Communication, 21(1), 1–16.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina
  2. 2.School of Economics and ManagementBeihang UniversityBeijingChina

Personalised recommendations