Ahlgren, P., & Colliander, C. (2009). Document–document similarity approaches and science mapping: Experimental comparison of five approaches. Journal of Informetrics,
3(1), 49–63. doi:10.1016/j.joi.2008.11.003.
Article
Google Scholar
Arenas, A., Fernández, A., & Gómez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics,
10(5), 53039.
Article
Google Scholar
Benoit, K., & Nulty P. (2016). quanteda: Quantitative analysis of textual data. https://CRAN.R-project.org/package=quanteda. Accessed January 31, 2016.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
10, 10008ff.
Article
Google Scholar
Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology,
61(12), 2389–2404. doi:10.1002/asi.21419.
Article
Google Scholar
Boyack, K. W., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology,
65(4), 670–685. doi:10.1002/asi.22990.
Article
Google Scholar
Colliander, C., & Ahlgren, P. (2012). Experimental comparison of first and second-order similarities in a scientometric context. Scientometrics,
90(2), 675–685. doi:10.1007/s11192-011-0491-x.
Article
Google Scholar
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research (p. 1695). Complex Systems: InterJournal.
Google Scholar
Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review,
14(4), 532–550.
Google Scholar
Feinerer, I., & Hornik, K. (2015). tm: Text mining package. https://CRAN.R-project.org/package=tm. Accessed January 31, 2016.
Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science,
315(5814), 972–976. doi:10.1126/science.1136800.
MathSciNet
Article
MATH
Google Scholar
Glänzel, W. (2012). Bibliometric methods for detecting and analysing emerging research topics. Profesional De La Informacion,
21(2), 194–201. doi:10.3145/epi.2012.mar.11.
Article
Google Scholar
Glänzel, W., & Thijs, B. (2011). Using ‘core documents’ for the representation of clusters and topics. Scientometrics,
88(1), 297–309. doi:10.1007/s11192-011-0347-4.
Article
Google Scholar
Hornik, K., Buchta, C., & Zeileis, A. (2009). Open-source machine learning: R meets Weka. Computational Statistics,
24(2), 225–232. doi:10.1007/s00180-008-0119-7.
MathSciNet
Article
MATH
Google Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification,
2(1), 193–218. doi:10.1007/BF01908075.
Article
MATH
Google Scholar
Janssens, F., Glänzel, W., & Moor, B. (2008). A hybrid mapping of information science. Scientometrics,
75(3), 607–631. doi:10.1007/s11192-007-2002-7.
Article
Google Scholar
Janssens, F., Zhang, L., de Moor, B., & Glänzel, W. (2009). Hybrid clustering for validation and improvement of subject-classification schemes. Information Processing and Management,
45(6), 683–702. doi:10.1016/j.ipm.2009.06.003.
Article
Google Scholar
Klavans, R., & Boyack, K. W. (2017). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? Journal of the Association for Information Science and Technology, 68, 984–998. doi:10.1002/asi.23734.
Article
Google Scholar
Li, Y., Zhang, G., Feng, Y., & Wu, C. (2015). An entropy-based social network community detecting method and its application to scientometrics. Scientometrics,
102(1), 1003–1017. doi:10.1007/s11192-014-1377-5.
Article
Google Scholar
Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory,
37(1), 145–151. doi:10.1109/18.61115.
MathSciNet
Article
MATH
Google Scholar
Liu, X., Glänzel, W., & de Moor, B. (2012). Optimal and hierarchical clustering of large-scale hybrid networks for scientific mapping. Scientometrics,
91(2), 473–493. doi:10.1007/s11192-011-0600-x.
Article
Google Scholar
Martin, S., Brown, W. Michael, Klavans, R., & Boyack, K. W. (2011). OpenOrd: An open-source toolbox for large graph layout. Proceedings of SPIE - The International Society for Optical Engineering,
7868, 786–806. doi:10.1117/12.871402.
Google Scholar
Meng, X., Liu, X., Tong, Y., Glänzel, W., & Tan, S. (2015). Multi-view clustering with exemplars for scientific mapping. Scientometrics,
105(3), 1527–1552. doi:10.1007/s11192-015-1682-7.
Article
Google Scholar
Newman, M. (2004). Fast algorithm for detecting community structure in networks. Physical Review E,
69(6), 066133. doi:10.1103/PhysRevE.69.066133.
Article
Google Scholar
R Core Team (2016). R: A language and environment for statistical computing. Vienna: R Foundation for statistical computing. URL https://www.R-project.org/. Accessed January 31, 2016.
Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval (McGraw-Hill computer science series). New York: McGraw-Hill.
MATH
Google Scholar
Schiebel, E. (2012). Visualization of research fronts and knowledge bases by three-dimensional areal densities of bibliographically coupled publications and co-citations. Scientometrics,
91(2), 557–566. doi:10.1007/s11192-012-0626-8.
Article
Google Scholar
Sharma, V., Prakash, U., & Kumar, B. V. M. (2015). Surface composites by friction stir processing: A review. Journal of Materials Processing Technology,
224, 117–134. doi:10.1016/j.jmatprotec.2015.04.019.
Article
Google Scholar
Sims, G. E., Jun, S.-R., Wu, G. A., & Kim, S.-H. (2008). Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proceedings of the National Academy of Sciences of the United States of America,
106(8), 2677–2682. doi:10.1073/pnas.0813249106.
Article
Google Scholar
Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research,
3, 583–617. doi:10.1162/153244303321897735.
MathSciNet
MATH
Google Scholar
Thijs, B., Schiebel, E., & Glänzel, W. (2013). Do second-order similarities provide added-value in a hybrid approach? Scientometrics,
96(3), 667–677. doi:10.1007/s11192-012-0896-1.
Article
Google Scholar
Zhang, L., Glänzel, W., & Ye, F. Y. (2015). The Dynamic evolution of core documents: An experimental study based on h-related literature (2005–2013). Scientometrics,
106(1), 369–381. doi:10.1007/s11192-015-1705-4.
Article
Google Scholar