Skip to main content

An evolutionary process of global nanotechnology collaboration: a social network analysis of patents at USPTO

Abstract

Using social network analysis to examine patenting data available at the USPTO, this paper explores an evolutionary process of global nanotechnology collaboration network from the perspective of entry and exit of collaborative organizations (nodes) and network’s preferential attachment process. The results show that the nanotechnology collaboration network evolved through frequent updates of the nodes and their relations (links). Compared with degree centrality and closeness centrality, betweenness centrality of an existing node was a significantly better predictor of the preferential attachment. The nodes with higher betweenness centrality were more influential to attract other nodes. This fact is observed while the network evolved. The results reveal that the core nodes with higher betweenness centrality were mostly large organizations that were equipped with core technology. They played an important broker role attracting more organizations into collaboration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Government includes the Ministry of International Trade and Industry (Tokyo, JP), National Research Council (Canada) (Ontario, CA), the United States of America as represented by the Secretary of Commerce (Washington, DC), Commissariat a L’ Energie Atomique (FR), and others.

References

  • Abbasi, A., Chung, K. S. K., & Hossain, L. (2012a). Egocentric analysis of co-authorship network structure, position and performance. Information Processing and Management, 48(4), 671–679.

    Article  Google Scholar 

  • Abbasi, A., Hossain, L., & Leydesdorff, L. (2012b). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.

    Article  Google Scholar 

  • Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.

    MathSciNet  Article  MATH  Google Scholar 

  • Appelbaum, R. P., Parker, R., & Cao, C. (2011). Developmental state and innovation: Nanotechnology in China. Global Networks, 11(3), 298–314.

    Article  Google Scholar 

  • Autant-Bernard, C., Billand, P., Frachisse, D., & Massard, N. (2007). Social distance versus spatial distance in R&D cooperation: Empirical evidence from European collaboration choices in micro and nanotechnologies. Papers in Regional Science, 86(3), 495–519.

    Article  Google Scholar 

  • Balland, P. A., De Vaan, M., & Boschma, R. (2013). The dynamics of interfirm networks along the industry life cycle: The case of the global video game industry, 1987–2007. Journal of Economic Geography, 13(5), 741–765.

    Article  Google Scholar 

  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    MathSciNet  Article  MATH  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590–614.

    MathSciNet  Article  MATH  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    MathSciNet  Article  Google Scholar 

  • Burt, R. S. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349–399.

    Article  Google Scholar 

  • Cantner, U., & Graf, H. (2006). The network of innovators in Jena: An application of social network analysis. Research Policy, 35(4), 463–480.

    Article  Google Scholar 

  • Cantner, U., & Rake, B. (2014). International research networks in pharmaceuticals: Structure and dynamics. Research Policy, 43(2), 333–348.

    Article  Google Scholar 

  • Cao, C., Appelbaum, R. P., & Parker, R. (2013). “Research is high and the market is far away”: Commercialization of nanotechnology in China. Technology in Society, 35(1), 55–64.

    Article  Google Scholar 

  • Cunningham, S. W., & Werker, C. (2012). Proximity and collaboration in European nanotechnology. Papers in Regional Science, 91(4), 723–742.

    Article  Google Scholar 

  • Davidsen, J., Ebel, H., & Bornholdt, S. (2002). Emergence of a small world from local interactions: Modeling acquaintance networks. Physical Review Letters, 88(12), 128–701.

    Article  Google Scholar 

  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  • Gay, B., & Dousset, B. (2005). Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry. Research Policy, 34(10), 1457–1475.

    Article  Google Scholar 

  • Goldberg, L. S. (2010). US–Japan collaborations in computer science/electrical engineering. In NSF Tokyo Office 50th anniversary symposium. https://www.nsf.gov/od/oise/tokyo/presentations/LGoldberg.pdf

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey (No. w3301). National Bureau of Economic Research.

  • Groves, C. (2013). Four scenarios for nanotechnologies in the UK, 2011–2020. Technology Analysis & Strategic Management, 25(5), 507–526.

    Article  Google Scholar 

  • Hong, W. (2008). Decline of the center: The decentralizing process of knowledge transfer of Chinese universities from 1985 to 2004. Research Policy, 37(4), 580–595.

    Article  Google Scholar 

  • Hong, W., & Su, Y. S. (2013). The effect of institutional proximity in non-local university–industry collaborations: An analysis based on Chinese patent data. Research Policy, 42(2), 454–464.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Chen, Z. K., & Roco, M. C. (2004). International nanotechnology development in 2003: Country, institution, and technology field analysis based on USPTO patent database. Journal of Nanoparticle Research, 6(4), 325–354.

    Article  Google Scholar 

  • Islam, N., & Ozcan, S. (2013). Nanotechnology innovation system: An empirical analysis of the emerging actors and collaborative networks. IEEE Transactions on Engineering Management, 60(4), 687–703.

    Article  Google Scholar 

  • Jost, J., & Joy, M. P. (2002). Evolving networks with distance preferences. Physical Review E, 66(3), 36–126.

    Article  Google Scholar 

  • Jung, H. J., & Lee, J. J. (2014). The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative. Research Policy, 43(1), 74–91.

    Article  Google Scholar 

  • Lei, X. P., Zhao, Z. Y., Zhang, X., Chen, D. Z., Huang, M. H., & Zhao, Y. H. (2011). The inventive activities and collaboration pattern of university–industry–government in China based on patent analysis. Scientometrics, 90(1), 231–251.

    Article  Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.

    Article  Google Scholar 

  • Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.

    Article  Google Scholar 

  • Ma, Z., & Lee, Y. (2008). Patent application and technological collaboration in inventive activities: 1980–2005. Technovation, 28(6), 379–390.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.

    Article  Google Scholar 

  • Milojević, S. (2010). Modes of collaboration in modern science: Beyond power laws and preferential attachment. Journal of the American Society for Information Science and Technology, 61(7), 1410–1423.

    Article  Google Scholar 

  • Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167–256.

    MathSciNet  Article  MATH  Google Scholar 

  • Newman, M. E. (2008). The mathematics of networks. The New Palgrave Encyclopedia of Economics, 2, 1–12.

    Google Scholar 

  • Onel, S., Zeid, A., & Kamarthi, S. (2011). The structure and analysis of nanotechnology co-author and citation networks. Scientometrics, 89(1), 119–138.

    Article  Google Scholar 

  • Pandza, K., Wilkins, T. A., & Alfoldi, E. A. (2011). Collaborative diversity in a nanotechnology innovation system: Evidence from the EU Framework Programme. Technovation, 31(9), 476–489.

    Article  Google Scholar 

  • Pisano, G. P. (1991). The governance of innovation: Vertical integration and collaborative arrangements in the biotechnology industry. Research Policy, 20(3), 237–249.

    Article  Google Scholar 

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Powell, W. W., Koput, K. W., & Smith-Doerr, L. (1996). Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Administrative Science Quarterly, 41(1), 116–145.

    Article  Google Scholar 

  • Powell, W. W., White, D. R., Koput, K. W., & Owen-Smith, J. (2005). Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences. American Journal of Sociology, 110(4), 1132–1205.

    Article  Google Scholar 

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.

    Article  Google Scholar 

  • Shipilov, A. V., & Li, S. X. (2008). Can you have your cake and eat it too? Structural holes’ influence on status accumulation and market performance in collaborative networks. Administrative Science Quarterly, 53(1), 73–108.

    Article  Google Scholar 

  • Song, M., & Montoya-Weiss, M. M. (2001). The effect of perceived technological uncertainty on Japanese new product development. Academy of Management Journal, 44(1), 61–80.

    Article  Google Scholar 

  • Sun, Y., & Cao, C. (2015). Intra-and inter-regional research collaboration across organizational boundaries: Evolving patterns in China. Technological Forecasting and Social Change, 96, 215–231.

    Article  Google Scholar 

  • Tang, L., & Shapira, P. (2011a). China-US scientific collaboration in nanotechnology: Patterns and dynamics. Scientometrics, 88(1), 1–16.

    Article  Google Scholar 

  • Tang, L., & Shapira, P. (2011b). Regional development and interregional collaboration in the growth of nanotechnology research in China. Scientometrics, 86(2), 299–315.

    Article  Google Scholar 

  • Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.

    Article  Google Scholar 

  • Wang, C. H., & Chien, P. Y. (2013). Exploring the nanotechnology alliances of nanotechnology firms: The roles of network position and technological uncertainty. Science Technology & Society, 18(2), 139–164.

    Article  Google Scholar 

  • Wang, G., & Guan, J. (2010). The role of patenting activity for scientific research: A study of academic inventors from China’s nanotechnology. Journal of Informetrics, 4(3), 338–350.

    Article  Google Scholar 

  • Weng, C. S., Yang, W. G., & Lai, K. K. (2014). Technological position in alliances network. Technology Analysis & Strategic Management, 26(6), 669–685.

    Article  Google Scholar 

  • Wilsdon, J. (2011). Knowledge, networks and nations: Global scientific collaboration in the 21st century. London: The Royal Society.

    Google Scholar 

  • Wong, P. K., Ho, Y. P., & Chan, C. K. (2007). Internationalization and evolution of application areas of an emerging technology: The case of nanotechnology. Scientometrics, 70(3), 715–737.

    Article  Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Youtie, J., & Kay, L. (2014). Acquiring nanotechnology capabilities: Role of mergers and acquisitions. Technology Analysis & Strategic Management, 26(5), 547–563.

    Article  Google Scholar 

  • Zhang, H., Qiu, B., Ivanova, K., Giles, C. L., Foley, H. C., & Yen, J. (2010). Locality and attachedness-based temporal social network growth dynamics analysis: A case study of evolving nanotechnology scientific collaboration networks. Journal of the American Society for Information Science and Technology, 61(5), 964–977.

    Article  Google Scholar 

  • Zhao, Q., & Guan, J. (2011). International collaboration of three ‘giants’ with the G7 countries in emerging nanobiopharmaceuticals. Scientometrics, 87(1), 159–170.

    Article  Google Scholar 

  • Zheng, J., Zhao, Z. Y., Zhang, X., Chen, D. Z., & Huang, M. H. (2014). International collaboration development in nanotechnology: A perspective of patent network analysis. Scientometrics, 98(1), 683–702.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by grants from the National Natural Science Foundation of China (71473026 and 71673037). Cao’s work has been partially supported by grants from the U.S. National Science Foundation (SES-0531184 and SES-0938099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, N. & Cao, C. An evolutionary process of global nanotechnology collaboration: a social network analysis of patents at USPTO. Scientometrics 111, 1449–1465 (2017). https://doi.org/10.1007/s11192-017-2362-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2362-6

Keywords

  • International collaboration
  • Patenting
  • Preferential attachment
  • Nanotechnology
  • Social network analysis