Skip to main content

A visualization tool of patent topic evolution using a growing cell structure neural network

Abstract

This research used a cell structure map to visualize technological evolution and showed the developmental trend in a technological field. The basic concept was to organize patents into a map produced by growing cell structures. The map was then disassembled into clusters with similar contexts using the Girvan–Newman algorithm. Next, the continuity between clusters in two snapshots was identified and used as the base for establishing a trajectory in the technology. An analysis of patents in the flaw detection field found that the field was composed of several technological trajectories. Among them, ultrasonic flaw detection, wafer inspection and substrate inspection were relatively larger and more continuing technologies, while infrared thermography defect inspection has been an emerging topic in recent years. It is to be hoped that the map of technology constructed in this research provides insights into the history of technological evolution and helps explain the transition patterns through changes in cluster continuity. This can serve a reference point by experts who attempt to visualize the mapping of technological development or identify the latest focus of attention.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, 2006 (pp. 554–560).

  • Chen, C., Cribbin, T., Macredie, R., & Morar, S. (2002). Visualizing and tracking the growth of competing paradigms: Two case studies. Journal of the American Society for Information Science and Technology, 53(8), 678–689.

    Article  Google Scholar 

  • Chen, S. H., Huang, M. H., & Chen, D. Z. (2012). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099–1110.

    Article  Google Scholar 

  • Chen, S. H., Huang, M. H., & Chen, D. Z. (2013). Exploring technology evolution and transition characteristics of leading countries: A case of fuel cell field. Advanced Engineering Informatics, 27(3), 366–377.

    Article  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166.

    Article  MATH  Google Scholar 

  • Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.

    Article  Google Scholar 

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.

    Article  Google Scholar 

  • Dodge, M. (2005). Information maps: Tools for document exploration. CASA Working Paper, No. 94. Retrieved from: http://discovery.ucl.ac.uk/174115/1/paper94.pdf.

  • Du, L., Buntine, W., Jin, H., & Chen, C. (2012). Sequential latent Dirichlet allocation. Knowledge and Information Systems, 31(3), 475–503.

    Article  Google Scholar 

  • Engelsman, E. C., & van Raan, A. F. (1994). A patent-based cartography of technology. Research Policy, 23(1), 1–26.

    Article  Google Scholar 

  • Falkowski, T. (2009). Community analysis in dynamic social networks. Dissertation, University Magdeburg.

  • Frantzi, K., Ananiadou, S., & Mima, H. (2000). Automatic recognition of multi-word terms: The c-value/nc-value method. International Journal on Digital Libraries, 3(2), 115–130.

    Article  Google Scholar 

  • Fritzke, B. (1994). Growing cell structures—A self-organizing network for unsupervised and supervised learning. Neural networks, 7(9), 1441–1460.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.

    MathSciNet  Article  MATH  Google Scholar 

  • Hariri, N., & Shekofteh, M. (2013). The scientific map of medicine in Iran: Category co-citation analysis. Malaysian Journal of Library and Information Science, 18(2), 79–94.

    Google Scholar 

  • Huang, M. H., Chen, S. H., Lin, C. Y., & Chen, D. Z. (2014). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z. K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.

    Article  Google Scholar 

  • Kandylas, V., Upham, S., & Ungar, L. H. (2010). Analyzing knowledge communities using foreground and background clusters. ACM Transactions on Knowledge Discovery from Data, 4(2), art. no. 7.

  • Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2), 313–330.

    Google Scholar 

  • Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering, 43(4), 841–862.

    Article  Google Scholar 

  • Noyons, E. C., & van Raan, A. F. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. Scientometrics, 30(1), 157–173.

    Article  Google Scholar 

  • Sarlin, P., & Yao, Z. (2013). Clustering of the self-organizing time map. Neurocomputing, 121(9), 317–327.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155.

    Article  Google Scholar 

  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.

    Article  Google Scholar 

  • Tijssen, R. (1993). A scientometric cognitive study of neural network research: Expert mental maps versus bibliometric maps. Scientometrics, 28(1), 111–136.

    Article  Google Scholar 

  • Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing and Management, 48(2), 303–325.

    Article  Google Scholar 

  • Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586–600.

    Article  Google Scholar 

  • Walker, A. J., Cross, S. S., & Harrison, R. F. (1999). Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. The Lancet, 354(9189), 1518–1521.

    Article  Google Scholar 

  • Williams, G. J., & Christen, P. (2010). Visualizing temporal cluster changes using relative density self-organizing maps. Knowledge and Information Systems, 25(2), 281–302.

    Article  Google Scholar 

  • Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., et al. (1995). Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In IEEE Proceedings of Information Visualization, 1995 (pp. 51–58).

Download references

Acknowledgements

The authors thank Professor Julie Callaert, the guest editor of Scientometrics, and two anonymous reviewers for constructive comments on an early version of this article. This research was partially supported by Taiwan Ministry of Science and Technology [MOST 104-2221-E-131-012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ssu-Han Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sung, HY., Yeh, HY., Lin, JK. et al. A visualization tool of patent topic evolution using a growing cell structure neural network. Scientometrics 111, 1267–1285 (2017). https://doi.org/10.1007/s11192-017-2361-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2361-7

Keywords

  • Technology map
  • Growing cell structures
  • Neural networks
  • Girvan–Newman algorithm
  • Natural language processing