Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research,
3, 993–1022.
MATH
Google Scholar
Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, 2006 (pp. 554–560).
Chen, C., Cribbin, T., Macredie, R., & Morar, S. (2002). Visualizing and tracking the growth of competing paradigms: Two case studies. Journal of the American Society for Information Science and Technology,
53(8), 678–689.
Article
Google Scholar
Chen, S. H., Huang, M. H., & Chen, D. Z. (2012). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change,
79(6), 1099–1110.
Article
Google Scholar
Chen, S. H., Huang, M. H., & Chen, D. Z. (2013). Exploring technology evolution and transition characteristics of leading countries: A case of fuel cell field. Advanced Engineering Informatics,
27(3), 366–377.
Article
Google Scholar
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics,
5(1), 146–166.
Article
MATH
Google Scholar
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change,
73(8), 981–1012.
Article
Google Scholar
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1(2), 224–227.
Article
Google Scholar
Dodge, M. (2005). Information maps: Tools for document exploration. CASA Working Paper, No. 94. Retrieved from: http://discovery.ucl.ac.uk/174115/1/paper94.pdf.
Du, L., Buntine, W., Jin, H., & Chen, C. (2012). Sequential latent Dirichlet allocation. Knowledge and Information Systems,
31(3), 475–503.
Article
Google Scholar
Engelsman, E. C., & van Raan, A. F. (1994). A patent-based cartography of technology. Research Policy,
23(1), 1–26.
Article
Google Scholar
Falkowski, T. (2009). Community analysis in dynamic social networks. Dissertation, University Magdeburg.
Frantzi, K., Ananiadou, S., & Mima, H. (2000). Automatic recognition of multi-word terms: The c-value/nc-value method. International Journal on Digital Libraries,
3(2), 115–130.
Article
Google Scholar
Fritzke, B. (1994). Growing cell structures—A self-organizing network for unsupervised and supervised learning. Neural networks,
7(9), 1441–1460.
Article
Google Scholar
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences,
99(12), 7821–7826.
MathSciNet
Article
MATH
Google Scholar
Hariri, N., & Shekofteh, M. (2013). The scientific map of medicine in Iran: Category co-citation analysis. Malaysian Journal of Library and Information Science,
18(2), 79–94.
Google Scholar
Huang, M. H., Chen, S. H., Lin, C. Y., & Chen, D. Z. (2014). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics,
98(2), 1085–1100.
Article
Google Scholar
Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z. K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research,
5(3–4), 333–363.
Article
Google Scholar
Kandylas, V., Upham, S., & Ungar, L. H. (2010). Analyzing knowledge communities using foreground and background clusters. ACM Transactions on Knowledge Discovery from Data, 4(2), art. no. 7.
Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational linguistics,
19(2), 313–330.
Google Scholar
Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering,
43(4), 841–862.
Article
Google Scholar
Noyons, E. C., & van Raan, A. F. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. Scientometrics,
30(1), 157–173.
Article
Google Scholar
Sarlin, P., & Yao, Z. (2013). Clustering of the self-organizing time map. Neurocomputing,
121(9), 317–327.
Article
Google Scholar
Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change,
77(7), 1147–1155.
Article
Google Scholar
Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics,
68(3), 595–610.
Article
Google Scholar
Tijssen, R. (1993). A scientometric cognitive study of neural network research: Expert mental maps versus bibliometric maps. Scientometrics,
28(1), 111–136.
Article
Google Scholar
Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing and Management,
48(2), 303–325.
Article
Google Scholar
Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks,
11(3), 586–600.
Article
Google Scholar
Walker, A. J., Cross, S. S., & Harrison, R. F. (1999). Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. The Lancet,
354(9189), 1518–1521.
Article
Google Scholar
Williams, G. J., & Christen, P. (2010). Visualizing temporal cluster changes using relative density self-organizing maps. Knowledge and Information Systems,
25(2), 281–302.
Article
Google Scholar
Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., et al. (1995). Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In IEEE Proceedings of Information Visualization, 1995 (pp. 51–58).