Scientometrics

, Volume 111, Issue 3, pp 1267–1285 | Cite as

A visualization tool of patent topic evolution using a growing cell structure neural network

  • Hui-Yun Sung
  • Hsi-Yin Yeh
  • Jin-Kwan Lin
  • Ssu-Han Chen
Article

Abstract

This research used a cell structure map to visualize technological evolution and showed the developmental trend in a technological field. The basic concept was to organize patents into a map produced by growing cell structures. The map was then disassembled into clusters with similar contexts using the Girvan–Newman algorithm. Next, the continuity between clusters in two snapshots was identified and used as the base for establishing a trajectory in the technology. An analysis of patents in the flaw detection field found that the field was composed of several technological trajectories. Among them, ultrasonic flaw detection, wafer inspection and substrate inspection were relatively larger and more continuing technologies, while infrared thermography defect inspection has been an emerging topic in recent years. It is to be hoped that the map of technology constructed in this research provides insights into the history of technological evolution and helps explain the transition patterns through changes in cluster continuity. This can serve a reference point by experts who attempt to visualize the mapping of technological development or identify the latest focus of attention.

Keywords

Technology map Growing cell structures Neural networks Girvan–Newman algorithm Natural language processing 

References

  1. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.MATHGoogle Scholar
  2. Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, 2006 (pp. 554–560).Google Scholar
  3. Chen, C., Cribbin, T., Macredie, R., & Morar, S. (2002). Visualizing and tracking the growth of competing paradigms: Two case studies. Journal of the American Society for Information Science and Technology, 53(8), 678–689.CrossRefGoogle Scholar
  4. Chen, S. H., Huang, M. H., & Chen, D. Z. (2012). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099–1110.CrossRefGoogle Scholar
  5. Chen, S. H., Huang, M. H., & Chen, D. Z. (2013). Exploring technology evolution and transition characteristics of leading countries: A case of fuel cell field. Advanced Engineering Informatics, 27(3), 366–377.CrossRefGoogle Scholar
  6. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166.CrossRefMATHGoogle Scholar
  7. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.CrossRefGoogle Scholar
  8. Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.CrossRefGoogle Scholar
  9. Dodge, M. (2005). Information maps: Tools for document exploration. CASA Working Paper, No. 94. Retrieved from: http://discovery.ucl.ac.uk/174115/1/paper94.pdf.
  10. Du, L., Buntine, W., Jin, H., & Chen, C. (2012). Sequential latent Dirichlet allocation. Knowledge and Information Systems, 31(3), 475–503.CrossRefGoogle Scholar
  11. Engelsman, E. C., & van Raan, A. F. (1994). A patent-based cartography of technology. Research Policy, 23(1), 1–26.CrossRefGoogle Scholar
  12. Falkowski, T. (2009). Community analysis in dynamic social networks. Dissertation, University Magdeburg.Google Scholar
  13. Frantzi, K., Ananiadou, S., & Mima, H. (2000). Automatic recognition of multi-word terms: The c-value/nc-value method. International Journal on Digital Libraries, 3(2), 115–130.CrossRefGoogle Scholar
  14. Fritzke, B. (1994). Growing cell structures—A self-organizing network for unsupervised and supervised learning. Neural networks, 7(9), 1441–1460.CrossRefGoogle Scholar
  15. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.MathSciNetCrossRefMATHGoogle Scholar
  16. Hariri, N., & Shekofteh, M. (2013). The scientific map of medicine in Iran: Category co-citation analysis. Malaysian Journal of Library and Information Science, 18(2), 79–94.Google Scholar
  17. Huang, M. H., Chen, S. H., Lin, C. Y., & Chen, D. Z. (2014). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.CrossRefGoogle Scholar
  18. Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z. K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.CrossRefGoogle Scholar
  19. Kandylas, V., Upham, S., & Ungar, L. H. (2010). Analyzing knowledge communities using foreground and background clusters. ACM Transactions on Knowledge Discovery from Data, 4(2), art. no. 7.Google Scholar
  20. Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2), 313–330.Google Scholar
  21. Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering, 43(4), 841–862.CrossRefGoogle Scholar
  22. Noyons, E. C., & van Raan, A. F. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. Scientometrics, 30(1), 157–173.CrossRefGoogle Scholar
  23. Sarlin, P., & Yao, Z. (2013). Clustering of the self-organizing time map. Neurocomputing, 121(9), 317–327.CrossRefGoogle Scholar
  24. Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155.CrossRefGoogle Scholar
  25. Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.CrossRefGoogle Scholar
  26. Tijssen, R. (1993). A scientometric cognitive study of neural network research: Expert mental maps versus bibliometric maps. Scientometrics, 28(1), 111–136.CrossRefGoogle Scholar
  27. Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing and Management, 48(2), 303–325.CrossRefGoogle Scholar
  28. Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586–600.CrossRefGoogle Scholar
  29. Walker, A. J., Cross, S. S., & Harrison, R. F. (1999). Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. The Lancet, 354(9189), 1518–1521.CrossRefGoogle Scholar
  30. Williams, G. J., & Christen, P. (2010). Visualizing temporal cluster changes using relative density self-organizing maps. Knowledge and Information Systems, 25(2), 281–302.CrossRefGoogle Scholar
  31. Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., et al. (1995). Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In IEEE Proceedings of Information Visualization, 1995 (pp. 51–58).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Hui-Yun Sung
    • 1
  • Hsi-Yin Yeh
    • 2
  • Jin-Kwan Lin
    • 3
  • Ssu-Han Chen
    • 4
  1. 1.Graduate Institute of Library and Information ScienceNational Chung Hsing UniversityTaichung CityTaiwan, ROC
  2. 2.National Applied Research Laboratories Science and Technology Policy Research and Information CenterPolicy Research DivisionTaipeiTaiwan, ROC
  3. 3.Department of Business and ManagementMing Chi University of TechnologyNew Taipei CityTaiwan, ROC
  4. 4.Department of Industrial Engineering and ManagementMing Chi University of TechnologyNew Taipei CityTaiwan, ROC

Personalised recommendations