Skip to main content

Analyzing the time delay between scientific research and technology patents based on the citation distribution model

Abstract

Promoting knowledge diffusion and reducing the delay between scientific research and technology patents is important to achieve success in the highly competitive global environment. This paper studies the time delay between scientific research and technology patents, and focuses on the key components of time in the promotion of knowledge transformation. Based on United States Patent and Trademark Office patent data, we apply periodical citation distribution models to the patent process. The results show that our transfer function model is better than others, and is suitable for calculating the delay between basic scientific research activities and technology patents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adenle, A. A., Haslam, G. E., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182–195.

    Article  Google Scholar 

  • Albrecht, J., Carrez, D., Cunningham, P., Daroda, L., Mancia, R., Máthé, L., Raschka, A., Carus, M. & Piotrowski, S. (2010). The knowledge based bio-economy (KBBE) in Europe: Achievements and challenges, clever consult BVBA (Belgium).

  • Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The economics of science and technology. The Journal of Technology Transfer, 27, 155–203.

    Article  Google Scholar 

  • Bacchiocchi, E., & Montobbio, F. (2009). Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations. The Journal of Technology Transfer, 34(2), 169–181.

    Article  Google Scholar 

  • Batabyal, A. A., & Nijkamp, P. (2008). Is there a tradeoff between average patent pendency and examination errors? International Review of Economics & Finance, 17(1), 150–158.

    Article  Google Scholar 

  • Bekkers, R., & Bodas Freitas, I. M. (2008). Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy, 37(10), 1837–1853.

    Article  Google Scholar 

  • Bonaccorsi, A., & Thoma, G. (2007). Institutional complementarity and inventive performance in nano science and technology. Research Policy, 36(6), 813–831.

    Article  Google Scholar 

  • Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  • Brookes, B. C. (1970). The growth, utility, and obsolescence of scientific periodical literature. Journal of Documents, 26(4), 283–294.

    Article  Google Scholar 

  • Cariboni, J., Gatelli, D., Liska, R., & Saltelli, A. (2007). The role of sensitivity analysis in ecological modeling. Ecological Modeling, 203, 167–182.

    Article  Google Scholar 

  • Chang, P., Wu, C., & Leu, H. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19.

    Article  Google Scholar 

  • Choe, H., Lee, D. H., Seo, I. W., & Kim, H. D. (2013). Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field. Renewable and Sustainable Energy Reviews, 26, 492–505.

    Article  Google Scholar 

  • Cockburn, I., & Henderson, R. (1996). Public-private interaction in pharmaceutical research. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12725–12730.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48(1), 1–23.

    Article  Google Scholar 

  • De La Potterie, B. V. P., & François, D. (2009). The cost factor in patent systems. Journal of Industry, Competition and Trade, 9(4), 329–355.

    Article  Google Scholar 

  • Dolle, R. E. (2011). Historical overview of chemical library design. Chemical Library Design, 685, 3–25.

    Article  Google Scholar 

  • Edler, J., Fier, H., & Grimpe, C. (2011). International scientist mobility and the locus of knowledge and technology transfer. Research Policy, 40(6), 791–805.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science. Amsterdam: Elsevier.

    Google Scholar 

  • Egghe, L., & Rousseau, R. (2000). The influence of publication delays on the observed aging distribution of scientific literature. Journal of the American Society for Information Science, 51(2), 158.

    Article  Google Scholar 

  • Etzkowitz, H., & Loet, L. (2000). The dynamics of innovation: from national systems and “mode 2″ to a Triple Helix of university-industry-government relations. Research Policy, 29(2), 109–123.

    Article  Google Scholar 

  • Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89(1), 37–50.

    Article  Google Scholar 

  • Garvey, W. D. (1979). Communication: The essence of science: Facilitating information exchange among librarians, scientists, engineers and students. New York: Pergamon Press.

    Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. Thousand Oaks, CA: Sage Publications Inc.

    Google Scholar 

  • Godin and Gingras. (2000). The place of universities in the system of knowledge production. Research Policy, 29, 273–278.

    Article  Google Scholar 

  • Guan, J., & Liu, N. (2014). Measuring scientific research in emerging nano-energy field. Journal of Nanoparticle Research, 16(4), 2356.

    Article  Google Scholar 

  • Guan, J., & Liu, N. (2015). Invention profiles and uneven growth in the field of emerging nano-energy. Energy Policy, 76, 146–157.

    Article  Google Scholar 

  • Guan, J., & Zhao, Q. (2013). The impact of university-industry collaboration networks on innovation in nanobiopharmaceuticals. Technological Forecasting and Social Change, 80(7), 1271–1286.

    Article  Google Scholar 

  • Gübeli, M. H., & Doloreux, D. (2005). An empirical study of university spin-off development. European Journal of Innovation Management, 8(3), 269–282.

    Article  Google Scholar 

  • Harhoff, D., & Wagner, S. (2003). Modeling the duration of patent examination at the European Patent Office, CEPR Working paper, No. 5283.

  • Hartmann, M., & Hassan, A. (2006). Application of real options analysis for pharmaceutical R&D project valuation—Empirical results from a survey. Research Policy, 35, 343–354.

    Article  Google Scholar 

  • Hassan, M. (2005). Small things and big changes in the developing world. Science, 5731, 65–66.

    Article  Google Scholar 

  • Hicks, D. M., Isard, P. A., & Martin, B. R. (1996). A morphology of Japanese and European corporate research networks. Research Policy, 25(3), 359–378.

    Article  Google Scholar 

  • Huang, M., Chen, S., Lin, C., & Chen, D. (2014a). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.

    Article  Google Scholar 

  • Huang, M., Dong, H., & Chen, D. (2013). The unbalanced performance and regional differences in scientific and technological collaboration in the field of solar cells. Scientometrics, 94, 423–438.

    Article  Google Scholar 

  • Huang, M., Huang, W., & Chen, D. (2014b). Technological impact factor: An indicator to measure the impact of academic publications on practical innovation. Journal of Informetrics, 8(1), 241–251.

    Article  Google Scholar 

  • Huff, (2000). Changes in organizational knowledge production. Academy of Management Review, 25(2), 288–293.

    MathSciNet  Google Scholar 

  • Kevles, D. (2002). Of mice and money: The story of the world’s first animal patent. Daedalus, 2, 78–88.

    Google Scholar 

  • Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Global nanotechnology research metrics. Scientometrics, 70, 565–601.

    Article  Google Scholar 

  • Krahmer, M., & Schmoch, U. (1998). Science-based technologies: University-industry interactions in four fields. Research Policy, 27(8), 835–851.

    Article  Google Scholar 

  • Lazaridis, G., & De La Potterie, B. V. P. (2007). The rigour of EPO’s patentability criteria: An insight into the “induced withdrawals”. World Patent Information, 29(4), 317–326.

    Article  Google Scholar 

  • Lecocq, C., & Van Looy, B. (2009). The impact of collaboration on the technological performance of regions: Time invariant or driven by life cycle dynamics? Scientometrics, 80(3), 845–865.

    Article  Google Scholar 

  • Levin, R. C. (1988). Appropriability, R&D spending and technological performance. The American Economic Review, 78, 424–428.

    Google Scholar 

  • Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.

    Article  Google Scholar 

  • Liu, W., Gu, M., Hu, G., Li, C., Liao, H., & Tang, L. (2014). Profile of developments in biomass-based bioenergy research: A 20-year perspective. Scientometrics, 99(2), 507–621.

    Article  Google Scholar 

  • Liu, X., Zhang, P., Li, X., Chen, H., Dang, Y., Larson, C., et al. (2009). Trends for nanotechnology development in China, Russia, and India. Journal of Nanoparticle Research, 11(8), 1845–1866.

    Article  Google Scholar 

  • Lo, S. S. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.

    Article  Google Scholar 

  • Lööf, H., & Broström, A. (2008). Does knowledge diffusion between university and industry increase innovativeness? The Journal of Technology Transfer, 33(1), 73–90.

    Article  Google Scholar 

  • Looy, B. V., Zimmermann, E., Veugelers, R., Verbeek, A., Mello, J., & Debackere, K. (2003). Do science-technology interactions pay off when developing technology? Scientometrics, 57(3), 355–367.

    Article  Google Scholar 

  • Marsili, O. (2001). The anatomy and evolution of industries: Technological change and industrial dynamics. Cheltenham: Edward Elgar.

    Google Scholar 

  • McMillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8.

    Article  Google Scholar 

  • Mehta, A., Herron, P., Motoyama, Y., Appelbaum, R., & Lenoir, T. (2012). Globalization and de-globalization in nanotechnology research: The role of China. Scientometrics, 93(2), 439–458.

    Article  Google Scholar 

  • Meldrum, C., Doyle, M. A., & Tothill, R. W. (2011). Next-generation sequencing for cancer diagnostics: A practical perspective. The Clinical Biochemist Reviews, 32(4), 177–195.

    Google Scholar 

  • Meyer, M. (2000). Does science push technology? Patents citing scientific literature. Research Policy, 29(3), 409–434.

    Article  Google Scholar 

  • Meyer, M., Debackere, K., & Glänzel, W. (2010). Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience. Scientometrics, 85(2), 527–539.

    Article  Google Scholar 

  • Meyer-Krahmer, F., & Ulrich, S. (1998). Science-based technologies: University–industry interactions in four fields. Research Policy, 27(8), 835–851.

    Article  Google Scholar 

  • Minbaeva, D., Pedersen, T., Bjorkman, I., Fey, C., & Park, H. (2003). MNC knowledge transfer, subsidiary absorptive capacity and knowledge transfer. Journal of International Business Studies, 34(6), 586–599.

    Article  Google Scholar 

  • Monjon, S., & Waelbroeck, P. (2003). Assessing spillovers from universities to firms: Evidence from French firm-level data. International Journal of Industrial Organization, 21(9), 1255–1270.

    Article  Google Scholar 

  • Morris, Max D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161–174.

    Article  Google Scholar 

  • Müller, K. (2010). Academic spin-off’s transfer speed-analyzing the time from leaving university to venture. Research Policy, 39(2), 189–199.

    Article  Google Scholar 

  • Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug Discovery, 8(12), 959–968.

    Article  Google Scholar 

  • Narin, F. (1994). Patent bibliometrics. Poetry Foundation, 1(30), 144–155.

    Google Scholar 

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • Nelson, A. J. (2009). Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion. Research Policy, 38(6), 994–1005.

    Article  Google Scholar 

  • Nikzad, R. (2011). Survival analysis of patents in Canada. The Journal of World Intellectual Property, 14(5), 368–382.

    Article  Google Scholar 

  • Park, H. W., & Kang, J. (2009). Patterns of scientific and technological knowledge flows based on scientific papers and patents. Scientometrics, 81(3), 811–820.

    Article  Google Scholar 

  • Pavitt, K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy, 6, 343–373.

    Article  Google Scholar 

  • Pisano, G. (1997). The development factory. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Popp, D., Juhl, T., & Johnson, D. K. N. (2003). Time in purgatory: Determinants of the grant lag for U.S. Patent Applications, National Bureau of Economic Research, Cambridge. Working paper.

  • Qiu, J. P. (1988). Bibliometrics. Beijing: Science and Technology Literature Press.

    Google Scholar 

  • Ribeiro, L. C., Ruiz, R. M., Bernardes, A. T., & Albuquerque, E. M. (2010). Matrices of science and technology interactions and patterns of structured growth: Implications for development. Scientometrics, 83(1), 55–75.

    Article  Google Scholar 

  • Saltelli, A., & Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. Environmental Modelling and Software, 25, 1508–1517.

    Article  Google Scholar 

  • Salter, A. J., & Martin, B. R. (2001). The economic benefits of publicly funded research: A critical review. Research Policy, 30, 509–539.

    Article  Google Scholar 

  • Sastry, K. R., Rashmi, H. B., & Badri, J. (2011). Research and development perspectives of transgenic cotton: Evidence from patent landscape studies. Journal of Intellectual Property Rights, 16(2), 139–153.

    Google Scholar 

  • Schartinger, D., Rammer, C., Fischer, M. M., & Fr Hlich, J. (2002). Knowledge interactions between universities and industry in Austria: Sectoral patterns and determinants. Research Policy, 31(3), 303–328.

    Article  Google Scholar 

  • Schmoch, U. (1997). Indicators and the relations between science and technology. Scientometrics, 38(1), 103–116.

    Article  Google Scholar 

  • Shin, J. C., Lee, S. J., & Kim, Y. (2012). Knowledge-based innovation and collaboration: A triple-helix approach in Saudi Arabia. Scientometrics, 90(1), 311–326.

    Article  Google Scholar 

  • Sternitzke, C. (2010). Knowledge sources, patent protection, and commercialization of pharmaceutical innovations. Research Policy, 39(6), 810–821.

    Article  Google Scholar 

  • Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution.

    Google Scholar 

  • Stuart, T. E., Ozdemir, S. Z., & Ding, W. W. (2007). Vertical alliance networks: The case of university–biotechnology–pharmaceutical alliance chains. Research Policy, 36, 477–498.

    Article  Google Scholar 

  • Tang, L., & Shapira, P. (2011). Regional development and interregional collaboration in the growth of nanotechnology research in China. Scientometrics, 86(2), 299–315.

    Article  Google Scholar 

  • Tegart, G. (2009). Energy and nanotechnologies: Priority areas for Australia’s future. Technological Forecasting and Social Change, 9, 1126–1240.

    Google Scholar 

  • Toole, A. A. (2012). The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry. Research Policy, 41, 1–12.

    Article  Google Scholar 

  • van Griensven, A., Meixner, T., Grunwald, S., et al. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 334, 10–23.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., & Luwel, M. (2003). Science cited in patents: A geographic “flow” analysis of bibliographic citation patterns in patents. Scientometrics, 58(2), 241–263.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.

    Article  Google Scholar 

  • Wang, C. D. (1997). Introduction of bibliometrics. Guangxi: Guangxi Teachers College Press.

    Google Scholar 

  • Wang, G., & Guan, J. (2010). The role of patenting activity for scientific research: A study of academic inventors from China’s nanotechnology. Journal of Informetrics, 4(3), 338–350.

    Article  Google Scholar 

  • Wang, G., & Guan, J. (2011). Measuring science-technology interactions using patent citations and author-inventor links: An exploration analysis from Chinese nanotechnology. Journal of Nanoparticle Research, 13(12), 6245–6262.

    Article  Google Scholar 

  • Wang, L., Zhang, Q., Yu, G., & Zhao, L. (2014). Study on measuring diffusion speed of scientific knowledge based on citation network. Journal of the China Society for Scientific and Technical Information, 33, 33–44. (in Chinese).

    Google Scholar 

  • Wang, X., Zhao, Y., Liu, R., & Zhang, J. (2013). Knowledge-transfer analysis based on co-citation clustering. Scientometrics, 97(3), 859–869.

    Article  Google Scholar 

  • Xie, Y., & Giles, D. E. (2011). A survival analysis of the approval of US patent applications. Applied Economics, 43(11), 1375–1384.

    Article  Google Scholar 

  • Xu, W., Chung, D. W., & Davie, E. W. (1996). The assembly of human fibrinogen. The Journal of Biological Chemistry, 271(44), 27948–27953.

    Article  Google Scholar 

  • Yu, G., Guo, R., & Li, Y. (2006). The influence of publication delays on three ISI indicators. Scientometrics, 69(3), 511–527.

    Article  Google Scholar 

  • Yu, G., & Li, Y. (2007). Parameter identification of the observed citation distribution. Scientometrics, 71(2), 339–348.

    Article  Google Scholar 

  • Yu, G., & Li, Y. (2010). Identification of referencing and citation processes of scientific journals based on the citation distribution model. Scientometrics, 82(2), 249–261.

    Article  Google Scholar 

  • Yu, G., Wang, X., & Yu, D. (2005). The influence of publication delays on impact factors. Scientometrics, 64(2), 235–246.

    Article  Google Scholar 

  • Yu, G., Wang, M., & Yu, D. (2010). Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis. Scientometrics, 84(1), 81–97.

    MathSciNet  Article  Google Scholar 

  • Zeng, S. X., Xie, X. M., & Tam, C. M. (2010). Relationship between cooperation networks and innovation performance of SMEs. Technovation, 30(3), 181–194.

    Article  Google Scholar 

  • Zhao, Q., & Guan, J. (2012). Modeling the dynamic relation between science and technology in nanotechnology. Scientometrics, 90(2), 561–579.

    Article  Google Scholar 

  • Zhao, Q., & Guan, J. (2013). Love dynamics between science and technology: Some evidences in nanoscience and nanotechnology. Scientometrics, 94(1), 113–132.

    Article  Google Scholar 

  • Zhao, Z., & Lei, X. (2013). Empirical analysis of the relationship between technology innovation and basic research. Current Science, 104(6), 714–720.

    Google Scholar 

  • Zheng, J., Zhao, Z., Zhang, X., Chen, D., & Huang, M. (2014). International collaboration development in nanotechnology: A perspective of patent network analysis. Scientometrics, 98(1), 683–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijie Zhang or Yuqiang Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Feng, Y., Yu, G. et al. Analyzing the time delay between scientific research and technology patents based on the citation distribution model. Scientometrics 111, 1287–1306 (2017). https://doi.org/10.1007/s11192-017-2357-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2357-3

Keywords

  • Knowledge diffusion
  • Time delay
  • Patent citation
  • Scientific research