Scientometrics

, Volume 111, Issue 3, pp 1987–1999

Effects of innovation management system standardization on firms: evidence from text mining annual reports

  • Gaizka Garechana
  • Rosa Río-Belver
  • Iñaki Bildosola
  • Marisela Rodríguez Salvador
Article

Abstract

Using a management formula to standardize innovation management can be thought of as deeply contradictory, however, several successful firms in Spain have been certified under the pioneer innovation management standard UNE 166002. This paper analyzes the effects that standardization has in the attitudes and values as regard to innovation for a sample of firms by text-mining their corporate disclosures. Changes in the relevance of the concepts, co-word networks and emotion analysis have been employed to conclude that the effects of certification on the corporate behavior about innovation are coincident with the open innovation and transversalization concepts that UNE 166002 promotes.

Keywords

UNE 166002 Innovation management Text mining Sentiment analysis Management standards 

Supplementary material

11192_2017_2345_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 kb)

References

  1. AENOR. (2014). Gestión de la I+D+i: Requisitos del Sistema de Gestión de la I+D+i. UNE 166002:2014.Google Scholar
  2. AENOR. (2016). UNE 166002 R&D&I management systems. Retrieved from http://www.en.aenor.es/aenor/certificacion/innovacion/innovacion_sistemas_166002.asp#.Vy5DAoThDak.
  3. Anderson, S. (1999). Why firms seek ISO 9000 certification: Regulatory compliance or competitive advantage? Production and Operations Management, 8(1), 28–43.CrossRefGoogle Scholar
  4. Back, B., Toivonen, J., Vanharanta, H., & Visa, A. (2001). Comparing numerical data and text information from annual reports using self-organizing maps. International Journal of Accounting Information Systems, 2(4), 249–269. doi:10.1016/S1467-0895(01)00018-5.CrossRefGoogle Scholar
  5. Balakrishnan, R., Qiu, X. Y., & Srinivasan, P. (2010). On the predictive ability of narrative disclosures in annual reports. European Journal of Operational Research, 202(3), 789–801. doi:10.1016/j.ejor.2009.06.023.CrossRefMATHGoogle Scholar
  6. Butler, M., & Kešelj, V. (2009). Financial forecasting using character N-Gram analysis and readability scores of annual reports. In Y. Gao & N. Japkowicz (Eds.), Advances in Artificial Intelligence (pp. 39–51). Berlin: Springer. doi:10.1007/978-3-642-01818-3_7.CrossRefGoogle Scholar
  7. Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50(1), 164–175. doi:10.1016/j.dss.2010.07.012.CrossRefGoogle Scholar
  8. Glynn, M. A. (1996). Innovative genius: a framework for relating individual and organizational intelligences to innovation. Academy of Management Review, 21(4), 1081–1111. doi:10.5465/AMR.1996.9704071864.Google Scholar
  9. Goel, S., & Gangolly, J. (2012). Beyond the numbers: mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 19(2), 75–89. doi:10.1002/isaf.1326.CrossRefGoogle Scholar
  10. Gök, A., Waterworth, A., & Shapira, P. (2015). Use of web mining in studying innovation. Scientometrics, 102(1), 653–671. doi:10.1007/s11192-014-1434-0.CrossRefGoogle Scholar
  11. Kenneth, J. M. (2011). More than numbers: R&D-related disclosure and firm performance. Dissertation, University of Michigan.Google Scholar
  12. Kim, D.-Y., Kumar, V., & Kumar, U. (2012). Relationship between quality management practices and innovation. Journal of Operations Management, 30(4), 295–315. doi:10.1016/j.jom.2012.02.003.CrossRefGoogle Scholar
  13. Kloptchenko, A., Eklund, T., Karlsson, J., Back, B., Vanharanta, H., & Visa, A. (2004). Combining data and text mining techniques for analysing financial reports. Intelligent Systems in Accounting, Finance & Management, 12(1), 29–41. doi:10.1002/isaf.239.CrossRefGoogle Scholar
  14. Li, F. (2006). Do stock market investors understand the risk sentiment of corporate annual reports? SSRN Electronic Journal. doi:10.2139/ssrn.898181.Google Scholar
  15. Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Journal of Accounting Literature, 29, 143–165.Google Scholar
  16. Libaers, D., Hicks, D., & Porter, A. L. (2016). A taxonomy of small firm technology commercialization. Industrial and Corporate Change, 25(3), 371–405. doi:10.1093/icc/dtq039.CrossRefGoogle Scholar
  17. Liew, W. Te, Adhitya, A., & Srinivasan, R. (2014). Sustainability trends in the process industries: A text mining-based analysis. Computers in Industry, 65(3), 393–400. doi:10.1016/j.compind.2014.01.004.CrossRefGoogle Scholar
  18. Liu, Z., & Jiang, Y. (2014). Analysis of multi-dimensional characteristics of corporate social responsibility report using China’s listed companies in 2011 as the case study. Journal of Nanjing University of Finance and Economics, 5, 10–18.Google Scholar
  19. Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65. doi:10.1111/j.1540-6261.2010.01625.x.CrossRefGoogle Scholar
  20. Mir-Mauri, M., & Casadesús, M. (2011). Standardised innovation management systems: A case study of the Spanish Standard UNE 166002:2006. Innovar, 21(40), 171–188.Google Scholar
  21. Mir-Mauri, M., & Fa, M. (2008). Une 166002: 2006: Estandarizar y sistematizar la i+d+i la norma y la importancia de las tic en su implementación. DYNA-Ingeniería E Industria, 83(6), 325–331.Google Scholar
  22. Modapothala, J. R., & Issac, B. (2009). Study of economic, environmental and social factors in sustainability reports using text mining and Bayesian analysis. In 2009 IEEE symposium on industrial electronics & applications (pp. 209–214). doi:10.1109/ISIEA.2009.5356467.
  23. Mohammad, S., & Turney, P. (2013). Crowdsourcing a word–emotion association lexicon. Computational Intelligence, 29(3), 436–465.MathSciNetCrossRefGoogle Scholar
  24. Naveh, E., & Erez, M. (2004). Innovation and attention to detail in the quality improvement paradigm. Management Science, 50(11), 1576–1586.CrossRefGoogle Scholar
  25. Pekovic, S., & Galia, F. (2009). From quality to innovation: Evidence from two French employer surveys. Technovation, 29(12), 829–842. doi:10.1016/j.technovation.2009.08.002.CrossRefGoogle Scholar
  26. Pineda, Á. (2015). Sistematizar con éxito la innovación: UNE 166002 Integrated Circuits Málaga. AENOR: Revista de la normalización y la certificación, 309, 44–47.Google Scholar
  27. Prajogo, D. I., & Hong, S. W. (2008). The effect of TQM on performance in R&D environments: A perspective from South Korean firms. Technovation, 28(12), 855–863. doi:10.1016/j.technovation.2008.06.001.CrossRefGoogle Scholar
  28. Prajogo, D. I., & Sohal, A. S. (2004). The multidimensionality of TQM practices in determining quality and innovation performance—An empirical examination. Technovation, 24(6), 443–453. doi:10.1016/S0166-4972(02)00122-0.CrossRefGoogle Scholar
  29. Qiu, X. Y., Srinivasan, P., & Hu, Y. (2014). Supervised learning models to predict firm performance with annual reports: An empirical study. Journal of the Association for Information Science and Technology, 65(2), 400–413. doi:10.1002/asi.22983.CrossRefGoogle Scholar
  30. Saha, A., & Nabareseh, S. (2015). Communicating corporate social responsibilities: Using text mining for a comparative analysis of banks in India and Ghana. Mediterranean Journal of Social Sciences, 6(3), 11–20. doi:10.5901/mjss.2015.v6n3s1p11.Google Scholar
  31. Shirata, C. Y., Takeuchi, H., Ogino, S., & Watanabe, H. (2011). Extracting key phrases as predictors of corporate bankruptcy: Empirical analysis of annual reports by text mining. Journal of Emerging Technologies in Accounting, 8(1), 31–44. doi:10.2308/jeta-10182.CrossRefGoogle Scholar
  32. Terziovski, M., & Guerrero, J.-L. (2014). ISO 9000 quality system certification and its impact on product and process innovation performance. International Journal of Production Economics, 158, 197–207. doi:10.1016/j.ijpe.2014.08.011.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Gaizka Garechana
    • 1
  • Rosa Río-Belver
    • 2
  • Iñaki Bildosola
    • 3
  • Marisela Rodríguez Salvador
    • 4
  1. 1.Technology Foresight Management (TFM) Group, Department of Industrial EngineeringUniversity of the Basque Country UPV/EHUBilbaoSpain
  2. 2.Technology Foresight Management (TFM) Group, Department of Industrial EngineeringUniversity of the Basque Country UPV/EHUVitoriaSpain
  3. 3.Technology Foresight Management (TFM) Group, Automatic Control and System Engineering DepartmentUniversity of the Basque Country UPV/EHUBilbaoSpain
  4. 4.Escuela de Ingeniería y CienciasTecnológico de MonterreyMonterreyMexico

Personalised recommendations