Agrawal, A. (2006). Engaging the inventor: Exploring licensing strategies for university inventions and the role of latent knowledge. Strategic Management Journal,
27(1), 63–79.
Article
Google Scholar
Alcacer, J., & Gittelman, M. (2006). Patent citations as a measure of knowledge flows: The influence of examiner citations. The Review of Economics and Statistics,
88(4), 774–779.
Article
Google Scholar
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation,
16(9), 451–519.
Article
Google Scholar
Azagra-Caro, J., Fernández-de-Lucio, I., Perruchas, F., & Mattsson, P. (2009). What do patent examiner inserted citations indicate for a region with low absorptive capacity? Scientometrics,
80(2), 441–455.
Article
Google Scholar
Basberg, B. L. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy,
16(2), 131–141.
Article
Google Scholar
Bessen, J. (2008). The value of US patents by owner and patent characteristics. Research Policy,
37(5), 932–945.
Article
Google Scholar
Bozbura, F. T., Beskese, A., & Kahraman, C. (2007). Prioritization of human capital measurement indicators using fuzzy AHP. Expert Systems with Applications,
32(4), 1100–1112.
Article
Google Scholar
Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics,
69(1), 169–173.
Google Scholar
Chen, Y.-S., & Chang, K.-C. (2012). Using the entropy-based patent measure to explore the influences of related and unrelated technological diversification upon technological competences and firm performance. Scientometrics,
90(3), 825–841.
Article
Google Scholar
Chen, D.-Z., Chang, H.-W., Huang, M.-H., & Fu, F.-C. (2005). Core technologies and key industries in Taiwan from 1978 to 2002: A perspective from patent analysis. Scientometrics,
64(1), 31–53.
Article
Google Scholar
Choi, C., & Park, Y. (2009). Monitoring the organic structure of technology based on the patent development paths. Technological Forecasting and Social Change,
76(6), 754–768.
Article
Google Scholar
Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C.-H. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics,
88(3), 863–883.
Article
Google Scholar
Cronin, B., & Meho, L. (2006). Using the h-index to rank influential information scientistss. Journal of the American Society for Information Science and Technology,
57(9), 1275–1278.
Article
Google Scholar
de Solla Price, D. (1983). Sealing wax and string: A philosophy of the experimenter’s craft and its role in the genesis of high technology. Paper presented at the Sarton Lecture, AAAS Meeting (May 1983).
Egghe, L. (2006). Theory and practice of the g-Index. Scientometrics, 69(1), 131–152.
Article
Google Scholar
Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science,
47(1), 117–132.
Article
Google Scholar
Funk, R. J., & Owen-Smith, J. (2016). A dynamic network measure of technological change. Management Science. doi:10.1287/mnsc.2015.2366.
Google Scholar
Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of citation patterns. Management Science,
49(4), 366–382.
Article
Google Scholar
Glänzel, W., & Thijs, B. (2012). Using “core documents” for detecting and labelling new emerging topics. Scientometrics,
91(2), 399–416. doi:10.1007/s11192-011-0591-7.
Article
Google Scholar
Grimaldi, M., Cricelli, L., Di Giovanni, M., & Rogo, F. (2015). The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning. Technological Forecasting and Social Change,
94, 286–302. doi:10.1016/j.techfore.2014.10.013.
Article
Google Scholar
Grupp, H. (1990). The concept of entropy in scientometrics and innovation research: An indicator for institutional involvement in scientific and technological developments. Scientometrics,
18(3–4), 219–239.
Article
Google Scholar
Guan, J., & He, Y. (2007). Patent-bibliometric analysis on the Chinese science—Technology linkages. Scientometrics,
72(3), 403–425.
Article
Google Scholar
Guellec, D., & de la Potterie, Bv P. (2000). Applications, grants and the value of patent. Economics Letters,
69(1), 109–114.
Article
MATH
Google Scholar
Guellec, D., & de la Potterie, Bv P. (2001). The internationalisation of technology analysed with patent data. Research Policy,
30(8), 1253–1266.
Article
Google Scholar
Hall, B. H. (2002). The NBER patent citation data file: Lessons, insights and methodological tools. In A. B. Jaffe & M. Trajtenberg (Eds.), Patents, citations and innovations (pp. 403–460). Cambridge, MA: MIT Press.
Google Scholar
Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. Rand Journal of Economics, 36(1), 16–38.
Google Scholar
Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research Policy,
32(8), 1343–1363.
Article
Google Scholar
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America, 16569–16572.
Iwami, S., Mori, J., Sakata, I., & Kajikawa, Y. (2014). Detection method of emerging leading papers using time transition. Scientometrics,
101(2), 1515–1533. doi:10.1007/s11192-014-1380-x.
Article
Google Scholar
Jiang, J., Lu, J., Zhang, G., & Long, G. (2011). Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop. Paper presented at the 2011 IEEE World Congress on Services.
Kay, L., Newman, N., Youtie, J., Porter, A. L., & Rafols, I. (2014). Patent overlay mapping: Visualizing technological distance. Journal of the Association for Information Science and Technology,
65(12), 2432–2443.
Article
Google Scholar
Lee, Y.-G. (2009). What affects a patent’s value? An analysis of variables that affect technological, direct economic, and indirect economic value: An exploratory conceptual approach. Scientometrics,
79(3), 623–633.
Article
Google Scholar
Lee, Y.-G., Lee, J.-D., Song, Y.-I., & Lee, S.-J. (2007). An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST. Scientometrics,
70(1), 27–39.
Article
Google Scholar
Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., et al. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics,
96(2), 427–441.
Article
Google Scholar
Leydesdorff, L. (2002). Indicators of structural change in the dynamics of science: Entropy statistics of the SCI Journal Citation Reports. Scientometrics,
53(1), 131–159.
Article
Google Scholar
Leydesdorff, L., Kushnir, D., & Rafols, I. (2014). Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC). Scientometrics,
98(3), 1583–1599.
Article
Google Scholar
Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems,
74, 12–32.
Article
Google Scholar
Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strategic Management Journal,
31(6), 602–628.
Google Scholar
Mao, M., Lu, J., Zhang, G., & Zhang, J. (2016). Multirelational social recommendations via multigraph ranking. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2016.2595620.
Google Scholar
Martínez, C. (2011). Patent families: When do different definitions really matter? Scientometrics,
86(1), 39–63.
Article
Google Scholar
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change,
70(8), 719–733.
Article
Google Scholar
Meyer, M., & Tang, P. (2007). Exploring the “value” of academic patents: IP management practices in UK universities and their implications for Third-Stream indicators. Scientometrics,
70(2), 415–440.
Article
Google Scholar
Mowery, D. C., Sampat, B. N., & Ziedonis, A. A. (2002). Learning to patent: Institutional experience, learning, and the characteristics of US university patents after the Bayh–Dole Act, 1981–1992. Management Science,
48(1), 73–89.
Article
Google Scholar
Narin, F., & Hamilton, K. S. (1996). Bibliometric performance measures. Scientometrics,
36(3), 293–310.
Article
Google Scholar
Pavitt, K. (1985). Patent statistics as indicators of innovative activities: Possibilities and problems. Scientometrics,
7(1–2), 77–99.
Article
Google Scholar
Qiu, X.-Q., Wang, H., Cai, B., Wang, L.-L., & Yue, S.-T. (2007). Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nature Biotechnology,
25(8), 921–929.
Article
Google Scholar
Qiu, X.-Q., Wang, H., Lu, X.-F., Zhang, J., Li, S.-F., Cheng, G., et al. (2003). An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nature Biotechnology,
21(12), 1480–1485.
Article
Google Scholar
Reitzig, M. (2003). What determines patent value?: Insights from the semiconductor industry. Research Policy,
32(1), 13–26.
Article
Google Scholar
Reitzig, M. (2004). Improving patent valuations for management purposes validating new indicators by analyzing application rationales. Research Policy,
33(6–7), 939–957. doi:10.1016/j.respol.2004.02.004.
Article
Google Scholar
Rip, A. (1988). Mapping of science: Possibilities and limitations. In A. F. J. van Raan (Ed.), Handbook of quantitative studies of science and technology (pp. 253–273). North-Holland: Elsevier Science Publishers B.V.
Chapter
Google Scholar
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research,
48(1), 9–26.
MathSciNet
Article
MATH
Google Scholar
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management,
24(5), 513–523.
Article
Google Scholar
Sapsalis, E., de la Potterie, Bv P, & Navon, R. (2006). Academic versus industry patenting: An in-depth analysis of what determines patent value. Research Policy,
35(10), 1631–1645.
Article
Google Scholar
Schmoch, U. (1993). Tracing the knowledge transfer from science to technology as reflected in patent indicators. Scientometrics,
26(1), 193–211.
Article
Google Scholar
Schumpeter, J. A. (1939). Business cycles: A theoretical, historical, and statistical analysis of the capitalist process (Vol. 1). New York: McGraw Hill.
Google Scholar
Shambour, Q., & Lu, J. (2012). A trust-semantic fusion-based recommendation approach for e-business applications. Decision Support Systems,
54(1), 768–780.
Article
Google Scholar
Shannon, C. (1948). A mathematical theory of communication. The Bell Systems Technical Journal,
27(3), 379–423.
MathSciNet
Article
MATH
Google Scholar
Tijssen, R. J. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science–technology interactions and knowledge flows. Research Policy,
30(1), 35–54.
Article
Google Scholar
Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research Policy,
45(3), 707–723. doi:10.1016/j.respol.2015.11.010.
Article
Google Scholar
Vinkler, P. (2013). Comparative rank assessment of journal articles. Journal of Informetrics,
7(3), 712–717. doi:10.1016/j.joi.2013.04.006.
Article
Google Scholar
Von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy,
34(10), 1591–1607.
Article
Google Scholar
Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E., Tijssen, R. J., Eck, N. J., et al. (2012). The Leiden Ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American Society for Information Science and Technology,
63(12), 2419–2432.
Article
Google Scholar
Wang, S.-J. (2007). Factors to evaluate a patent in addition to citations. Scientometrics,
71(3), 509–522.
Article
Google Scholar
Wang, B., & Hsieh, C.-H. (2015). Measuring the value of patents with fuzzy multiple criteria decision making: Insight into the practices of the Industrial Technology Research Institute. Technological Forecasting and Social Change,
92, 263–275. doi:10.1016/j.techfore.2014.09.015.
Article
Google Scholar
Xu, H., Martin, E., & Mahidadia, A. (2014). Contents and time sensitive document ranking of scientific literature. Journal of Informetrics,
8(3), 546–561. doi:10.1016/j.joi.2014.04.006.
Article
Google Scholar
Yoon, J., Park, H., & Kim, K. (2013). Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics,
94(1), 313–331.
Article
Google Scholar
Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014a). “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change,
85, 26–39.
Article
Google Scholar
Zhang, Y., Shang, L., Huang, L., Porter, A. L., Lu, J., & Zhu, D. (2016). A hybrid similarity measure method for patent portfolio analysis Journal of Informetrics.. doi:10.1016/j.joi.2016.09.006.
Google Scholar
Zhang, Y., Zhou, X., Porter, A. L., Gomila, J. M. V., & Yan, A. (2014b). Triple Helix innovation in China’s dye-sensitized solar cell industry: Hybrid methods with semantic TRIZ and technology roadmapping. Scientometrics,
99(1), 55–75.
Article
Google Scholar