Bauin, S., Michelet, B., Schweighoffer, M. G., & Vermeulin, P. (1991). Using bibliometrics in strategic analysis: “Understanding chemical reactions” at the CNRS. Scientometrics,
22(1), 113–137.
Article
Google Scholar
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM,
55(4), 77–84.
Article
Google Scholar
Boyack, K. W. (2017a). Investigating the effect of global data on topic detection. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2297-y.
Boyack, K. W. (2017b). Thesaurus-based methods for mapping contents of publication sets. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2304-3.
Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology,
61(12), 2389–2404.
Article
Google Scholar
Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics,
64(3), 351–374.
Article
Google Scholar
Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information,
22(2), 191–235.
Article
Google Scholar
Cambrosio, A., & Keating, P. (1988). “Going monoclonal”: Art, science, and magic in the day-to-day use of hybridoma technology. Social Problems,
35(3), 244–260.
Article
Google Scholar
Chubin, D. E. (1976). The conceptualization of scientific specialties. Sociological Quarterly,
17(4), 448–476.
Article
Google Scholar
Collins, H. M. (1974). The TEA set: Tacit knowledge and scientific networks. Science Studies,
4, 165–186.
Article
Google Scholar
Collins, H. M. (1975). The seven sexes: A study in the sociology of a phenomenon, or the replication of experiments in physics. Sociology,
9, 205–224.
Article
Google Scholar
Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago: The University of Chicago Press.
Google Scholar
Crawford, S. (1971). Informal communication among scientists in sleep research. Journal of the American Society for Information Science,
22, 301–310.
Article
Google Scholar
de Solla Price, D. (1986). [1963]. Little science, big science… and beyond. New York: Columbia University Press.
Google Scholar
Edge, D., & Mulkay, M. J. (1976). Astronomy transformed: The emergence of radio astronomy in Britain. New York: Wiley.
Google Scholar
Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences,
104(1), 36–41.
Article
Google Scholar
Glänzel, W. (1996). The need for standards in bibliometric research and technology. Scientometrics,
35(2), 167–176.
Article
Google Scholar
Glänzel, W., & Czerwon, H. J. (1996). A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics,
37(2), 195–221.
Article
Google Scholar
Glänzel, W., Katz, S., Moed, H., & Schoepflin, U. (1996). Preface. Scientometrics,
35(2), 165–166.
Article
Google Scholar
Glänzel, W., & Schoepflin, U. (1994). Little scientometrics, big scientometrics… and beyond. Scientometrics,
30(2–3), 375–384.
Article
Google Scholar
Glänzel, W., & Schoepflin, U. (1995). A bibliometric study on ageing and reception processes of scientific literature. Journal of Information Science, 21(1), 37–53.
Article
Google Scholar
Glänzel, W., & Thijs, B. (2017). Using hybrid methods and `core documents’ for the representation of clusters and topics: The astronomy dataset. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2301-6.
Gläser, J. (2017). Topic identification challenge. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2307-0.
Gläser, J., Heinz, M., & Havemann, F. (2015). Epistemic diversity as distribution of paper dissimilarities. In A. A. Salah, Y. Tonta, A. A. A. Salah, C. Sugimoto, & U. Al (Eds.), Proceedings of ISSI 2015 Istanbul: 15th International society of scientometrics and informetrics conference, Istanbul, Turkey, 29 June to 3 July, 2015 (pp. 1006–1017). Istanbul: Boğaziçi University Printhouse.
Google Scholar
Glenisson, P., Glänzel, W., Janssens, F., & De Moor, B. (2005). Combining full text and bibliometric information in mapping scientific disciplines. Information Processing and Management,
41(6), 1548–1572.
Article
Google Scholar
Griffith, B. C., Small, H. G., Stonehill, J. A., & Dey, S. (1974). The structure of scientific literatures II: Toward a macro- and microstructure for science. Science Studies,
4(4), 339–365.
Article
Google Scholar
Havemann, F., Gläser, J., & Heinz, M. (2017). Memetic search for overlapping topics based on a local evaluation of link communities. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2302-5.
Healey, P., Rothman, H., & Hoch, P. K. (1986). An experiment in science mapping for research planning. Research Policy,
15(5), 233–251.
Article
Google Scholar
Hric, D., Darst, R. K., & Fortunato, S. (2014). Community detection in networks: Structural communities versus ground truth. Physical Review E,
90(062805), 1–19.
Google Scholar
Janssens, F., Glänzel, W., & De Moor, B. (2007). Dynamic hybrid clustering of bioinformatics by incorporating text mining and citation analysis. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. San Jose, California, USA, ACM, pp 360–369.
Jarneving, B. (2001). The cognitive structure of current cardiovascular research. Scientometrics,
50(3), 365–389.
Article
Google Scholar
Katz, J. S. (1999). The self-similar science system. Research Policy,
28(5), 501–517.
Article
Google Scholar
Kedrow, B. M. (1975/76 [1961/65]). Klassifizierung der Wissenschaften (Vols. 2). (German translation of: B. M. Kedrov, Klassifikatsiya Nauk. Moscow: Mysl', Vol. 1: 1961, Vol. 2: 1965). Berlin: Akademie-Verlag.
Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.
Article
Google Scholar
Klavans, R., & Boyack, K. W. (2011). Using global mapping to create more accurate document-level maps of research fields. Journal of the American Society for Information Science and Technology,
62(1), 1–18.
Article
Google Scholar
Klavans, R., & Boyack, K. W. (2015). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? http://arxiv.org/abs/1511.05078. Accessed 21 Dec 2016.
Koopman, R., & Wang, S. (2017). Mutual information based labelling and comparing clusters. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2305-2.
Koopman, R., Wang, S., & Scharnhorst, A. (2017). Contextualization of topics (extended): Browsing through the universe of bibliographic information. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2303-4.
Kuhn, T. (1962). The structure of scientific revolutions. Chicago: The University of Chicago Press.
Google Scholar
Law, J., Bauin, S., Courtial, J.-P., & Whittaker, J. (1988). Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics,
14(3–4), 251–264.
Article
Google Scholar
Leydesdorff, L. (1986). The development of frames of references. Scientometrics,
9(3–4), 103–125.
Article
Google Scholar
Leydesdorff, L. (1987). Various methods for the mapping of science. Scientometrics,
11(5–6), 295–324.
Article
Google Scholar
Leydesdorff, L. (2004). Clusters and maps of science journals based on bi-connected graphs in journal citation reports. Journal of Documentation,
60(4), 371–427.
Article
Google Scholar
Leydesdorff, L., & Bornmann, L. (2011). How fractional counting of citations affects the impact factor: Normalization in terms of differences in citation potentials among fields of science. Journal of the American Society for Information Science and Technology,
62(2), 217–229.
Article
Google Scholar
Leydesdorff, L., & Cozzens, S. E. (1993). The delineation of specialities in terms of journals using the dynamic journal set of the SCI. Scientometrics,
26(1), 135–156.
Article
Google Scholar
Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology,
60(2), 348–362.
Article
Google Scholar
Leydesdorff, L., Rotolo, D., & Rafols, I. (2012). Bibliometric perspectives on medical innovation using the medical subject headings of PubMed. Journal of the American Society for Information Science and Technology,
63(11), 2239–2253.
Article
Google Scholar
Leydesdorff, L., Wagner, C., & Bornmann, L. (2016a). Replicability and the public/private divide, Letter to the Editor. Journal of the American Society for Information Science and Technology, 67(7), 1777–1778. doi:10.1002/asi.23672.
Article
Google Scholar
Leydesdorff, L., Wouters, P., & Bornmann, L. (2016b). Professional and citizen bibliometrics: Complementarities and ambivalences in the development and use of indicators—a state-of-the-art report. Scientometrics, 109(3), 1–22.
Google Scholar
Marshakova, I. V. (1973). A system of document connection based on references (in Russian). Scientific and Technical Information Serial of VINITI,
6(2), 3–8.
Google Scholar
Moed, H. F. (Ed.). (2005). Citation analysis in research evaluation. Dordrecht: Springer.
Google Scholar
Moed, H. F., Burger, J. M., Frankfort, J. G., & van Raan, A. F. J. (1985). The application of bibliometric indicators: Important field- and time-dependent factors to be considered. Scientometrics,
8(3–4), 177–203.
Article
Google Scholar
Mulkay, M. J. (1977). Sociology of the scientific research community. In I. Spiegel-Rösing & D. de Solla Price (Eds.), Science, technology and society: A cross-disciplinary perspective (pp. 93–148). London: Sage.
Google Scholar
Mulkay, M. J., Gilbert, G. N., & Woolgar, S. (1975). Problem areas and research networks in science. Sociology,
9(2), 187–203.
Article
Google Scholar
Noyons, E. C. M. (2001). Bibliometric mapping of science in a science policy context. Scientometrics,
50(1), 83–98.
Article
Google Scholar
Noyons, E. C. M. (2004). Science maps within a science policy context. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 237–256). Dordrecht: Kluwer Academic Publishers.
Google Scholar
Noyons, E. C. M., & van Raan, A. F. J. (1998). Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American Society for Information Science,
49(1), 68–81.
Google Scholar
Peel, L., Larremore, D. B., & Clauset, A. (2016). The ground truth about metadata and community detection in networks. Cornell University Library. https://arxiv.org/abs/1608.05878. Accessed 21 Dec 2016.
Rip, A., & Courtial, J.-P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics,
6(6), 381–400.
Article
Google Scholar
Schiminovich, S. (1971). Automatic classification and retrieval of documents by means of a bibliographic pattern discovery algorithm. Information Storage and Retrieval,
6(6), 417–435.
Article
Google Scholar
Sirtes, D., Waltman, L., Archambault, É., Glänzel, W., Hornbostel, S., & Wouters, P. (2013). Bibliometric evaluation standards debate: Introductory presentation and panel discussion. In S. Hinze & A. Lottmann (Eds.), Translational twists and turns: Science as a socio-economic endeavor (pp. 373–377). Berlin: Institute for Research Information and Quality Assurance.
Google Scholar
Small, H. G. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science,
24(4), 265–269.
MathSciNet
Article
Google Scholar
Small, H. G. (1977). A co-citation model of a scientific specialty: A longitudinal study of collagen research. Social Studies of Science,
7(2), 139–166.
MathSciNet
Article
Google Scholar
Small, H. G., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy,
43(8), 1450–1467.
Article
Google Scholar
Small, H. G., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialities. Science Studies,
4(1), 17–40.
Article
Google Scholar
Smiraglia, R. P. (2015). Domain analysis of domain analysis for knowledge organization: Observations on an emergent methodological cluster. Knowledge Organization,
42(8), 602–611.
Google Scholar
Šubelj, L., van Eck, N. J., & Waltman, L. (2016). Clustering scientific publications based on citation relations: A systematic comparison of different methods. PLoS ONE,
11(4), e0154404.
Article
Google Scholar
Tijssen, R. J. W. (1992). A quantitative assessment of interdisciplinary structures in science and technology: Co-classification analysis of energy research. Research Policy,
21(1), 27–44.
Article
Google Scholar
Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2300-7.
Van Raan, A. F. J. (1990). Fractal dimension of co-citations. Nature,
347, 626.
Article
Google Scholar
Van Raan, A. F. J. (2000). On growth, ageing, and fractal differentiation of science. Scientometrics,
47(2), 347–362.
Article
Google Scholar
Van Raan, A. F. J., & Tijssen, R. J. W. (1993). The neural net of neural network research: An exercise in bibliometric mapping. Scientometrics,
26(1), 169–192.
Article
Google Scholar
Velden, T., Boyack, K. W., Gläser, J., Koopman, R., Scharnhorst, A., & Wang, S. (2017a). Comparison of topic extraction approaches and their results. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2306-1.
Velden, T., Yan, S., & Lagoze, C. (2017b). Mapping the cognitive structure of astrophysics by infomap: Clustering of the citation network and topic affinity analysis. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2299-9.
Verspagen, B., & Werker, C. (2003). The invisible college of the economics of innovation and technological change. Estudios de Economía Aplicada,
21(3), 393–419.
Google Scholar
Waltman, L., & van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology,
63(12), 2378–2392.
Article
Google Scholar
Wang, S., & Koopman, R. (2017). Clustering articles based on semantic similarity. In J. Gläser, A. Scharnhorst & W. Glänzel (Eds.), Same data—different results? Towards a comparative approach to the identification of thematic structures in science, Special Issue of Scientometrics. doi:10.1007/s11192-017-2298-x.
White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science,
32(3), 163–171.
Article
Google Scholar
White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science,
49(4), 327–355.
Google Scholar
Whitley, R. (Ed.). (1974). Cognitive and social institutionalization of scientific specialties and research areas. In social processes of scientific development (pp. 69–95). London: Routledge & Kegan Paul.
Google Scholar
Whitley, R. (2000 [1984]). The intellectual and social organization of the sciences. Oxford: Clarendon Press.
Woolgar, S. (1976). The identification and definition of scientific collectivities. In G. Lemaine, R. Macleod, M. Mulkay, & P. Weingart (Eds.), Perspectives on the emergence of scientific disciplines (pp. 233–245). Paris: Mouton.
Google Scholar
Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics,
100(3), 767–786.
Article
Google Scholar
Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing and Management,
42(6), 1513–1531.
Article
Google Scholar