Skip to main content

A hybrid method to trace technology evolution pathways: a case study of 3D printing

Abstract

Whether it be for countries to improve the ability to undertake independent innovation or for enterprises to enhance their international competitiveness, tracing historical progression and forecasting future trends of technology evolution is essential for formulating technology strategies and policies. In this paper, we apply co-classification analysis to reveal the technical evolution process of a certain technical field, use co-word analysis to extract implicit or unknown patterns and topics, and employ main path analysis to discover significant clues about technology hotspots and development prospects. We illustrate this hybrid approach with 3D printing, referring to various technologies and processes used to synthesize a three-dimensional object. Results show how our method offers technical insights and traces technology evolution pathways, and then helps decision-makers guide technology development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in US patents: An overview and analysis. Research Policy, 38(2), 415–427. doi:10.1016/j.respol.2008.12.001.

    Article  Google Scholar 

  • Batagelj, V. (2003). Efficient algorithms for citation network analysis. https://arxiv.org/pdf/cs/0309023v1.pdf. Accessed December, 13 2015.

  • Bengisu, M. (2003). Critical and emerging technologies in materials, manufacturing, and industrial engineering: A study for priority setting. Scientometrics, 58(3), 473–487. doi:10.1023/B:SCIE.0000006875.61813.f6.

    Article  Google Scholar 

  • Breitzman, A., & Thomas, P. (2002). Using patent citation analysis to target/value M&A candidates. Research-Technology Management, 45(5), 28–36. doi:10.1080/08956308.2002.11671519.

    Google Scholar 

  • Chang, P.-L., Wu, C.-C., & Leu, H.-J. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19. doi:10.1007/s11192-009-0033-y.

    Article  Google Scholar 

  • Chen, D. Z., Chang, H. W., Huang, M. H., & Fu, F. C. (2005). Core technologies and key industries in Taiwan from 1978 to 2002: A perspective from patent analysis. Scientometrics, 64(1), 31–53. doi:10.1007/s11192-005-0236-9.

    Article  Google Scholar 

  • Choi, C., & Park, Y. (2009). Monitoring the organic structure of technology based on the patent development paths. Technological Forecasting and Social Change, 76(6), 754–768. doi:10.1016/j.techfore.2008.10.007.

    Article  Google Scholar 

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (Structural Analysis in the Social Sciences). New York: Cambridge University Press.

    Google Scholar 

  • Duguet, E., & MacGarvie, M. (2004). How well do patent citations measure flows of technology? Evidence from French innovation surveys. Economics of Innovation and New Technology, 14(5), 375–393. doi:10.1080/1043859042000307347.

    Article  Google Scholar 

  • Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242. doi:10.1007/s11192-012-0796-4.

    Article  Google Scholar 

  • Fleming, L., & Sorenson, O. (2004). Science as a map in technological search. Strategic Management Journal, 25(8–9), 909–928. doi:10.1002/smj.384.

    Article  Google Scholar 

  • Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336. doi:10.1080/10438590801969073.

    Article  Google Scholar 

  • Ganguli, P. (2004). Patents and patent information in 1979 and 2004: A perspective from India. World Patent Information, 26(1), 61–62. doi:10.1016/j.wpi.2003.10.015.

    Article  MathSciNet  Google Scholar 

  • Gao, L. D., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T. T., et al. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398–407. doi:10.1016/j.techfore.2012.10.003.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826. doi:10.1073/pnas.122653799.

    Article  MathSciNet  MATH  Google Scholar 

  • Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research Policy, 32(8), 1343–1363. doi:10.1016/s0048-7333(02)00124-5.

    Article  Google Scholar 

  • Hegde, D., & Sampat, B. (2009). Examiner citations, applicant citations, and the private value of patents. Economics Letters, 105(3), 287–289. doi:10.1016/j.econlet.2009.08.019.

    Article  Google Scholar 

  • Ho, M. H. C., Lin, V. H., & Liu, J. S. (2014). Exploring knowledge diffusion among nations: A study of core technologies in fuel cells. Scientometrics, 100(1), 149–171. doi:10.1007/s11192-014-1265-z.

    Article  Google Scholar 

  • Hopkins, M. M., & Siepel, J. (2013). Just how difficult can it be counting up R&D funding for emerging technologies (and is tech mining with proxy measures going to be any better)? Technology Analysis & Strategic Management, 25(6), 655–685. doi:10.1080/09537325.2013.801950.

    Article  Google Scholar 

  • Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. 4575330. Washington, DC: U.S. Patent and Trademark Office.

  • Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63. doi:10.1016/0378-8733(89)90017-8.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598. doi:10.2307/2118401.

    Article  Google Scholar 

  • Jun, S., & Lee, S.-J. (2012). Emerging technology forecasting using new patent information analysis. International Journal of Software Engineering & Its Applications, 6(3), 107–115.

    Google Scholar 

  • Kajikawa, Y., & Takeda, Y. (2009). Citation network analysis of organic LEDs. Technological Forecasting and Social Change, 76(8), 1115–1123. doi:10.1016/j.techfore.2009.04.004.

    Article  Google Scholar 

  • Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782. doi:10.1016/j.techfore.2007.05.005.

    Article  Google Scholar 

  • Kay, L., Newman, N., Youtie, J., Porter, A. L., & Rafols, I. (2014). Patent overlay mapping: Visualizing technological distance. Journal of the Association for Information Science and Technology, 65(12), 2432–2443. doi:10.1002/asi.23146.

    Article  Google Scholar 

  • Lacasa, I. D., Grupp, H., & Schmoch, U. (2003). Tracing technological change over long periods in Germany in chemicals using patent statistics. Scientometrics, 57(2), 175–195. doi:10.1023/a:1024133517484.

    Article  Google Scholar 

  • Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s Cosineversus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85. doi:10.1002/asi.20732.

    Article  Google Scholar 

  • Liu, J. S., & Lu, L. Y. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528–542. doi:10.1002/asi.21692.

    Article  Google Scholar 

  • Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega-International Journal of Management Science, 41(1), 3–15. doi:10.1016/j.omega.2010.12.006.

    Article  Google Scholar 

  • Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719–733. doi:10.1016/S0040-1625(02)00375-X.

    Article  Google Scholar 

  • McMillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8. doi:10.1016/S0048-7333(99)00030-X.

    Article  Google Scholar 

  • Meyer, M. S. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51(1), 163–183. doi:10.1023/a:1010572914033.

    Article  Google Scholar 

  • Meyer, P. S., Yung, J. W., & Ausubel, J. H. (1999). A primer on logistic growth and substitution: The mathematics of the Loglet Lab software. Technological Forecasting and Social Change, 61(3), 247–271. doi:10.1016/s0040-1625(99)00021-9.

    Article  Google Scholar 

  • Moehrle, M. G. (2010). Measures for textual patent similarities: A guided way to select appropriate approaches. Scientometrics, 85(1), 95–109. doi:10.1007/s11192-010-0243-3.

    Article  Google Scholar 

  • Montecchi, T., Russo, D., & Liu, Y. (2013). Searching in cooperative patent classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. doi:10.1016/j.aei.2013.02.002.

    Article  Google Scholar 

  • Müller, S., Sandner, P., & Welpe, I. (2014). Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Energy Procedia, 61, 2293–2296. doi:10.1016/j.egypro.2014.12.440.

    Article  Google Scholar 

  • Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403. doi:10.1016/s0048-7333(02)00070-7.

    Article  Google Scholar 

  • Park, J., & Heo, E. (2013). Patent quality determinants based on technology life cycle with special reference to solar-cell technology field. Maejo International Journal of Science and Technology, 7(2), 315–328.

    Google Scholar 

  • Porter, A. L., & Cunningham, S. W. (2005). Tech mining: Exploiting new technologies for competitive advantage (Systems Engineering and Management). New York: John Wiley & Sons.

    Google Scholar 

  • Porter, A. L., Kongthon, A., & Lu, J.-C. (2002). Research profiling: Improving the literature review. Scientometrics, 53(3), 351–370. doi:10.1023/a:1014873029258.

    Article  Google Scholar 

  • Porter, A. L., Roper, A. L., Mason, T. W., Rossini, F. A., & Banks, J. (1991). Forecasting and Management of Technology (Engineering Technology Management). New York: Wiley.

    Google Scholar 

  • Robinson, D. K., & Propp, T. (2008). Multi-path mapping for alignment strategies in emerging science and technologies. Technological Forecasting and Social Change, 75(4), 517–538. doi:10.1016/j.techfore.2008.02.002.

    Article  Google Scholar 

  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513–523. doi:10.1016/0306-4573(88)90021-0.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155. doi:10.1016/j.techfore.2010.03.008.

    Article  Google Scholar 

  • Simmons, E. S. (2009). “Black sheep” in the patent family. World Patent Information, 31(1), 11–18. doi:10.1016/j.wpi.2008.08.005.

    Article  Google Scholar 

  • Sorenson, O., Rivkin, J. W., & Fleming, L. (2006). Complexity, networks and knowledge flow. Research Policy, 35(7), 994–1017. doi:10.1016/j.respol.2006.05.002.

    Article  Google Scholar 

  • Tijssen, R. J. W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54. doi:10.1016/S0048-7333(99)00080-3.

    Article  Google Scholar 

  • Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43(5), 1216–1247. doi:10.1016/j.ipm.2006.11.011.

    Article  Google Scholar 

  • Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115. doi:10.1142/s0219525907000945.

    Article  MATH  Google Scholar 

  • Vicente Gomila, J. M., & Palop Marro, F. (2013). Combining tech-mining and semantic-TRIZ for a faster and better technology analysis: A case in energy storage systems. Technology Analysis and Strategic Management, 25(6), 725–743. doi:10.1080/09537325.2013.803065.

    Article  Google Scholar 

  • von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591–1607. doi:10.1016/j.respol.2005.08.001.

    Article  Google Scholar 

  • Wu, C.-H., Ken, Y., & Huang, T. (2010). Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing, 10(4), 1164–1177. doi:10.1016/j.asoc.2009.11.033.

    Article  Google Scholar 

  • Yatsko, V. A. (2013). Advantages and disadvantages of TF*IDF term weighting. World of Scientific Discoveries, 2013(42), 229–244.

    Google Scholar 

  • Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213–228. doi:10.1007/s11192-011-0383-0.

    Article  Google Scholar 

  • Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37–50. doi:10.1016/j.hitech.2003.09.003.

    Article  Google Scholar 

  • Yung, J. W., Meyer, P. S., & Ausubel, J. H. (1999). The Loglet Lab software: A tutorial. Technological Forecasting and Social Change, 61(3), 273–295. doi:10.1016/s0040-1625(99)00023-2.

    Article  Google Scholar 

  • Zhang, Y., Porter, A. L., Hu, Z. Y., Guo, Y., & Newman, N. C. (2014a). “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change85, 26–39. doi:10.1016/j.techfore.2013.12.019.

    Article  Google Scholar 

  • Zhang, Y., Zhou, X., Porter, A. L., & Vicente Gomila, J. M. (2014b). How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “Problem & solution” pattern based semantic TRIZ tool and case study. Scientometrics101(2), 1375–1389. doi:10.1007/s11192-014-1262-2.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the U.S. National Science Foundation (Award No. 1527370), National Natural Science Foundation of China (Grant No. 71503020 and Grant No. 71673024), MOE (Ministry of Education of the People’s Republic of China) Project of Humanities and Social Sciences (Grant No. 13YJC630042), and the Beijing Institute of Technology Basic Research Project (Grant No. 20142142013). The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the supporters. We also thank anonymous reviewers who make useful comments to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhu, D., Qian, Y. et al. A hybrid method to trace technology evolution pathways: a case study of 3D printing. Scientometrics 111, 185–204 (2017). https://doi.org/10.1007/s11192-017-2271-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2271-8

Keywords

  • Tech mining
  • Technology innovation
  • Technology evolution
  • Main path analysis
  • 3D printing