Abstract
Whether it be for countries to improve the ability to undertake independent innovation or for enterprises to enhance their international competitiveness, tracing historical progression and forecasting future trends of technology evolution is essential for formulating technology strategies and policies. In this paper, we apply co-classification analysis to reveal the technical evolution process of a certain technical field, use co-word analysis to extract implicit or unknown patterns and topics, and employ main path analysis to discover significant clues about technology hotspots and development prospects. We illustrate this hybrid approach with 3D printing, referring to various technologies and processes used to synthesize a three-dimensional object. Results show how our method offers technical insights and traces technology evolution pathways, and then helps decision-makers guide technology development.
This is a preview of subscription content, access via your institution.











Similar content being viewed by others
References
Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in US patents: An overview and analysis. Research Policy, 38(2), 415–427. doi:10.1016/j.respol.2008.12.001.
Batagelj, V. (2003). Efficient algorithms for citation network analysis. https://arxiv.org/pdf/cs/0309023v1.pdf. Accessed December, 13 2015.
Bengisu, M. (2003). Critical and emerging technologies in materials, manufacturing, and industrial engineering: A study for priority setting. Scientometrics, 58(3), 473–487. doi:10.1023/B:SCIE.0000006875.61813.f6.
Breitzman, A., & Thomas, P. (2002). Using patent citation analysis to target/value M&A candidates. Research-Technology Management, 45(5), 28–36. doi:10.1080/08956308.2002.11671519.
Chang, P.-L., Wu, C.-C., & Leu, H.-J. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19. doi:10.1007/s11192-009-0033-y.
Chen, D. Z., Chang, H. W., Huang, M. H., & Fu, F. C. (2005). Core technologies and key industries in Taiwan from 1978 to 2002: A perspective from patent analysis. Scientometrics, 64(1), 31–53. doi:10.1007/s11192-005-0236-9.
Choi, C., & Park, Y. (2009). Monitoring the organic structure of technology based on the patent development paths. Technological Forecasting and Social Change, 76(6), 754–768. doi:10.1016/j.techfore.2008.10.007.
De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (Structural Analysis in the Social Sciences). New York: Cambridge University Press.
Duguet, E., & MacGarvie, M. (2004). How well do patent citations measure flows of technology? Evidence from French innovation surveys. Economics of Innovation and New Technology, 14(5), 375–393. doi:10.1080/1043859042000307347.
Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242. doi:10.1007/s11192-012-0796-4.
Fleming, L., & Sorenson, O. (2004). Science as a map in technological search. Strategic Management Journal, 25(8–9), 909–928. doi:10.1002/smj.384.
Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336. doi:10.1080/10438590801969073.
Ganguli, P. (2004). Patents and patent information in 1979 and 2004: A perspective from India. World Patent Information, 26(1), 61–62. doi:10.1016/j.wpi.2003.10.015.
Gao, L. D., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T. T., et al. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398–407. doi:10.1016/j.techfore.2012.10.003.
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826. doi:10.1073/pnas.122653799.
Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research Policy, 32(8), 1343–1363. doi:10.1016/s0048-7333(02)00124-5.
Hegde, D., & Sampat, B. (2009). Examiner citations, applicant citations, and the private value of patents. Economics Letters, 105(3), 287–289. doi:10.1016/j.econlet.2009.08.019.
Ho, M. H. C., Lin, V. H., & Liu, J. S. (2014). Exploring knowledge diffusion among nations: A study of core technologies in fuel cells. Scientometrics, 100(1), 149–171. doi:10.1007/s11192-014-1265-z.
Hopkins, M. M., & Siepel, J. (2013). Just how difficult can it be counting up R&D funding for emerging technologies (and is tech mining with proxy measures going to be any better)? Technology Analysis & Strategic Management, 25(6), 655–685. doi:10.1080/09537325.2013.801950.
Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. 4575330. Washington, DC: U.S. Patent and Trademark Office.
Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63. doi:10.1016/0378-8733(89)90017-8.
Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598. doi:10.2307/2118401.
Jun, S., & Lee, S.-J. (2012). Emerging technology forecasting using new patent information analysis. International Journal of Software Engineering & Its Applications, 6(3), 107–115.
Kajikawa, Y., & Takeda, Y. (2009). Citation network analysis of organic LEDs. Technological Forecasting and Social Change, 76(8), 1115–1123. doi:10.1016/j.techfore.2009.04.004.
Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782. doi:10.1016/j.techfore.2007.05.005.
Kay, L., Newman, N., Youtie, J., Porter, A. L., & Rafols, I. (2014). Patent overlay mapping: Visualizing technological distance. Journal of the Association for Information Science and Technology, 65(12), 2432–2443. doi:10.1002/asi.23146.
Lacasa, I. D., Grupp, H., & Schmoch, U. (2003). Tracing technological change over long periods in Germany in chemicals using patent statistics. Scientometrics, 57(2), 175–195. doi:10.1023/a:1024133517484.
Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s Cosineversus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85. doi:10.1002/asi.20732.
Liu, J. S., & Lu, L. Y. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528–542. doi:10.1002/asi.21692.
Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega-International Journal of Management Science, 41(1), 3–15. doi:10.1016/j.omega.2010.12.006.
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719–733. doi:10.1016/S0040-1625(02)00375-X.
McMillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8. doi:10.1016/S0048-7333(99)00030-X.
Meyer, M. S. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51(1), 163–183. doi:10.1023/a:1010572914033.
Meyer, P. S., Yung, J. W., & Ausubel, J. H. (1999). A primer on logistic growth and substitution: The mathematics of the Loglet Lab software. Technological Forecasting and Social Change, 61(3), 247–271. doi:10.1016/s0040-1625(99)00021-9.
Moehrle, M. G. (2010). Measures for textual patent similarities: A guided way to select appropriate approaches. Scientometrics, 85(1), 95–109. doi:10.1007/s11192-010-0243-3.
Montecchi, T., Russo, D., & Liu, Y. (2013). Searching in cooperative patent classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. doi:10.1016/j.aei.2013.02.002.
Müller, S., Sandner, P., & Welpe, I. (2014). Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Energy Procedia, 61, 2293–2296. doi:10.1016/j.egypro.2014.12.440.
Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403. doi:10.1016/s0048-7333(02)00070-7.
Park, J., & Heo, E. (2013). Patent quality determinants based on technology life cycle with special reference to solar-cell technology field. Maejo International Journal of Science and Technology, 7(2), 315–328.
Porter, A. L., & Cunningham, S. W. (2005). Tech mining: Exploiting new technologies for competitive advantage (Systems Engineering and Management). New York: John Wiley & Sons.
Porter, A. L., Kongthon, A., & Lu, J.-C. (2002). Research profiling: Improving the literature review. Scientometrics, 53(3), 351–370. doi:10.1023/a:1014873029258.
Porter, A. L., Roper, A. L., Mason, T. W., Rossini, F. A., & Banks, J. (1991). Forecasting and Management of Technology (Engineering Technology Management). New York: Wiley.
Robinson, D. K., & Propp, T. (2008). Multi-path mapping for alignment strategies in emerging science and technologies. Technological Forecasting and Social Change, 75(4), 517–538. doi:10.1016/j.techfore.2008.02.002.
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513–523. doi:10.1016/0306-4573(88)90021-0.
Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155. doi:10.1016/j.techfore.2010.03.008.
Simmons, E. S. (2009). “Black sheep” in the patent family. World Patent Information, 31(1), 11–18. doi:10.1016/j.wpi.2008.08.005.
Sorenson, O., Rivkin, J. W., & Fleming, L. (2006). Complexity, networks and knowledge flow. Research Policy, 35(7), 994–1017. doi:10.1016/j.respol.2006.05.002.
Tijssen, R. J. W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54. doi:10.1016/S0048-7333(99)00080-3.
Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43(5), 1216–1247. doi:10.1016/j.ipm.2006.11.011.
Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115. doi:10.1142/s0219525907000945.
Vicente Gomila, J. M., & Palop Marro, F. (2013). Combining tech-mining and semantic-TRIZ for a faster and better technology analysis: A case in energy storage systems. Technology Analysis and Strategic Management, 25(6), 725–743. doi:10.1080/09537325.2013.803065.
von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591–1607. doi:10.1016/j.respol.2005.08.001.
Wu, C.-H., Ken, Y., & Huang, T. (2010). Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing, 10(4), 1164–1177. doi:10.1016/j.asoc.2009.11.033.
Yatsko, V. A. (2013). Advantages and disadvantages of TF*IDF term weighting. World of Scientific Discoveries, 2013(42), 229–244.
Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213–228. doi:10.1007/s11192-011-0383-0.
Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37–50. doi:10.1016/j.hitech.2003.09.003.
Yung, J. W., Meyer, P. S., & Ausubel, J. H. (1999). The Loglet Lab software: A tutorial. Technological Forecasting and Social Change, 61(3), 273–295. doi:10.1016/s0040-1625(99)00023-2.
Zhang, Y., Porter, A. L., Hu, Z. Y., Guo, Y., & Newman, N. C. (2014a). “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 85, 26–39. doi:10.1016/j.techfore.2013.12.019.
Zhang, Y., Zhou, X., Porter, A. L., & Vicente Gomila, J. M. (2014b). How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “Problem & solution” pattern based semantic TRIZ tool and case study. Scientometrics, 101(2), 1375–1389. doi:10.1007/s11192-014-1262-2.
Acknowledgements
We acknowledge support from the U.S. National Science Foundation (Award No. 1527370), National Natural Science Foundation of China (Grant No. 71503020 and Grant No. 71673024), MOE (Ministry of Education of the People’s Republic of China) Project of Humanities and Social Sciences (Grant No. 13YJC630042), and the Beijing Institute of Technology Basic Research Project (Grant No. 20142142013). The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the supporters. We also thank anonymous reviewers who make useful comments to us.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Y., Zhu, D., Qian, Y. et al. A hybrid method to trace technology evolution pathways: a case study of 3D printing. Scientometrics 111, 185–204 (2017). https://doi.org/10.1007/s11192-017-2271-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-017-2271-8