Skip to main content

Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines

Abstract

Comparing 5 publications from China that described knockdowns of the human TPD52L2 gene in human cancer cell lines identified unexpected similarities between these publications, flaws in experimental design, and mis-matches between some described experiments and the reported results. Following communications with journal editors, two of these TPD52L2 publications have been retracted. One retraction notice stated that while the authors claimed that the data were original, the experiments had been out-sourced to a biotechnology company. Using search engine queries, automatic text-analysis, different similarity measures, and further visual inspection, we identified 48 examples of highly similar papers describing single gene knockdowns in 1–2 human cancer cell lines that were all published by investigators from China. The incorrect use of a particular TPD52L2 shRNA sequence as a negative or non-targeting control was identified in 30/48 (63%) of these publications, using a combination of Google Scholar searches and visual inspection. Overall, these results suggest that some publications describing the effects of single gene knockdowns in human cancer cell lines may include the results of experiments that were not performed by the authors. This has serious implications for the validity of such results, and for their application in future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. http://scidetect.forge.imag.fr.

  2. http://CRAN.R-project.org/package=statcheck.

  3. http://pubpeer.com.

  4. More information of the PubMed similar function: https://www.ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.Computation_of_Similar_Articles.

  5. http://scidetect.forge.imag.fr.

  6. http://thatsmathematics.com/mathgen/.

  7. http://www.foolabs.com/xpdf/home.html.

References

  • Altman, D. G. (2002). Poor-quality medical research: What can journals do? JAMA, 287(21), 2765–2767. doi:10.1001/jama.287.21.2765.

    Article  Google Scholar 

  • Amancio, D. R. (2015). Comparing the topological properties of real and artificially generated scientific manuscripts. Scientometrics, 105(4), 1763–1779. doi:10.1007/s11192-015-1637-z.

    Article  Google Scholar 

  • Amancio, D. R., Aluisio, S. M., Oliveira, O. N., & Costa, L. da F. (2012). Complex networks analysis of language complexity. Europhysics Letters, 100(5), 58002. doi:10.1209/0295-5075/100/58002.

  • Anderson, M. S., Ronning, E. A., De Vries, R., & Martinson, B. C. (2007). The perverse effects of competition on scientists’ work and relationships. Science and Engineering Ethics, 13(4), 437–461. doi:10.1007/s11948-007-9042-5.

    Article  Google Scholar 

  • Argamon, S., & Levitan, S. (2005). Measuring the usefulness of function words for authorship attribution. In Proceeding of the 2005 ACH/ALLC conference, June 2005, Victoria, BC, Canada.

  • Ausloos, M., Nedic, O., Fronczak, A., & Fronczak, P. (2016). Quantifying the quality of peer reviewers through Zipf’s law. Scientometrics, 106(1), 347–368. doi:10.1007/s11192-015-1704-5.

    Article  Google Scholar 

  • Bik, E. M., Casadevall, A., & Fang, F. C. (2016). The prevalence of inappropriate image duplication in biomedical research publications. mBio, 7(3), e00809–e00816. doi:10.1128/mBio.00809-16.

    Article  Google Scholar 

  • Bohannon, J. (2015). Hoax-detecting software spots fake papers. Science, 348(6230), 18–19. doi:10.1126/science.aab0381.

    MathSciNet  Article  Google Scholar 

  • Bornmann, L. (2013). Research misconduct-definitions, manifestations and extent. Publications, 1, 87–98. doi:10.3390/publications1030087.

    Article  Google Scholar 

  • Bowen, A., & Casadevall, A. (2015). Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11335–11340. doi:10.1073/pnas.1504955112.

    Article  Google Scholar 

  • Boyer-Guittaut, M., Poillet, L., Liang, Q., Bôle-Richard, E., Ouyang, X., Benavides, G. A., et al. (2014). The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy, 10(6), 986–1003. doi:10.4161/auto.28390.

    Article  Google Scholar 

  • Butler, L. (2003). Explaining Australia’s increased share of ISI publications—The effects of a funding formula based on publication counts. Research Policy, 32(1), 143–155. doi:10.1016/S0048-7333(02)00007-0.

    Article  Google Scholar 

  • Byrne, J. A., Frost, S., Chen, Y., & Bright, R. K. (2014). Tumor protein D52 (TPD52) and cancer—Oncogene understudy, or understudied oncogene? Tumour Biology, 35(8), 7369–7382. doi:10.1007/s13277-014-2006-x.

    Article  Google Scholar 

  • Capes-Davis, A., & Neve, R. M. (2016). Authentication: A standard problem or a problem of standards? PLoS Biology, 14(6), e1002477. doi:10.1371/journal.pbio.1002477.

    Article  Google Scholar 

  • Carpena, P., Bernaola-Galván, P., Hackenberg, M., Coronado, A. V., & Oliver, J. L. (2009). Level statistics of words: Finding keywords in literary texts and symbolic sequences. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 79(3 Pt 2), 035102. doi:10.1103/PhysRevE.79.035102.

    Article  Google Scholar 

  • Casadevall, A., Steen, R. G., & Fang, F. C. (2014). Sources of error in the retracted scientific literature. The FASEB Journal, 28(9), 3847–3855. doi:10.1096/fj.14-256735.

    Article  Google Scholar 

  • Citron, D. T., & Ginsparg, P. (2015). Patterns of text reuse in a scientific corpus. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 25–30. doi:10.1073/pnas.1415135111.

    Article  Google Scholar 

  • Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, IT-13, 21–27.

    Article  MATH  Google Scholar 

  • Delgado López-Cózar, E., Robinson-García, N., & Torres-Salinas, D. (2014). The Google scholar experiment: How to index false papers and manipulate bibliometric indicators. Journla of the Association for Information Science and Technology, 65, 446–454. doi:10.1002/asi.23056.

    Article  Google Scholar 

  • Djuric, D. (2015). Penetrating the omerta of predatory publishing: The Romanian connection. Science and Engineering Ethics, 21(1), 183–202. doi:10.1007/s11948-014-9521-4.

    Article  Google Scholar 

  • Fahrenberg, U., Biondi, F., Corre, K., Jégourel, C., Kongshøj, S., & Legay, A. (2014). Measuring global similarity between texts. In L. Besacier et al. (Eds.), Statistical language and speech processing, lecture notes in computer science (Vol. 8791, pp. 220–232). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-11397-5_17.

  • Fanelli, D. (2009). How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE, 4(5), e5738. doi:10.1371/journal.pone.0005738.

    Article  Google Scholar 

  • Fang, F. C., & Casadevall, A. (2015). Competitive science: Is competition ruining science? Infection and Immunity, 83(4), 1229–1233. doi:10.1128/IAI.02939-14.

    Article  Google Scholar 

  • Fang, F. C., Steen, R. G., & Casadevall, A. (2012). Misconduct accounts for the majority of retracted scientific publications. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 17028–17033. doi:10.1073/pnas.1212247109.

    Article  Google Scholar 

  • Ferguson, C., Marcus, A., & Oransky, I. (2014). The peer-review scam. Nature, 515(7528), 480–482.

    Article  Google Scholar 

  • Ginsparg, P. (2014). Automated screening: Arxiv screens spot fake papers. Nature, 508(7494), 44. doi:10.1038/508044a.

    Article  Google Scholar 

  • He, Y., Chen, F., Cai, Y., & Chen, S. (2015). Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International, 39(3), 264–271. doi:10.1002/cbin.10388.

    Article  Google Scholar 

  • He, Y., Chen, F., Cai, Y., & Chen, S. (2016). Retracted: Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International, 40(3), 361. doi:10.1002/cbin.10593.

    Article  Google Scholar 

  • Hockey, S., & Martin, J. (1988). OCP users’ manual. Oxford: Oxford University Computing Service.

    Google Scholar 

  • Hvistendahl, M. (2013). China’s publication bazaar. Science, 342(6162), 1035–1039. doi:10.1126/science.342.6162.1035.

    Article  Google Scholar 

  • Konwisorz, A., Springwald, A., Haselberger, M., Goerse, R., Ortmann, O., & Treeck, O. (2010). Knockdown of ICB-1 gene enhanced estrogen responsiveness of ovarian and breast cancer cells. Endocrine-Related Cancer, 17(1), 147–157. doi:10.1677/ERC-09-0095.

    Article  Google Scholar 

  • Kornfeld, D. S. (2012). Perspective: Research misconduct: The search for a remedy. Academic Medicine, 87(7), 877–882. doi:10.1097/ACM.0b013e318257ee6a.

    Article  Google Scholar 

  • Kreutzberg, G. W. (2004). The rules of good science. EMBO Reports, 5(4), 330–332. doi:10.1038/sj.embor.7400136.

    Article  Google Scholar 

  • Labbé, C., & Labbé, D. (2012). Detection of hidden intertextuality in the scientific publications. In 11th International conference on textual data statistical analysis, 2012, Liège, Belgium (pp. 537–551). Liège: LASLA - SESLA.

  • Labbé, C., & Labbé, D. (2013). Duplicate and fake publications in the scientific literature: How many SCIgen papers in computer science? Scientometrics, 94(1), 379–396. doi:10.1007/s11192-012-0781-y.

    Article  Google Scholar 

  • Lesk, M. (2015). How many scientific papers are not original? Proceedings of the National Academy of Sciences of the United States of America, 112(1), 6–7. doi:10.1073/pnas.1422282112.

    Article  Google Scholar 

  • Lin, S. (2013). Why serious academic fraud occurs in China. Learned Publishing, 26(1), 24–27. doi:10.1087/20130105.

    Article  Google Scholar 

  • Mehri, A., Darooneh, A. H., & Shariati, A. (2012). The complex networks approach for authorship attribution of books. Physica A: Statistical Mechanics and its Applications, 391(7), 2429–2437. doi:10.1016/j.physa.2011.12.011.

    Article  Google Scholar 

  • Michels, C., & Schmoch, U. (2012). The growth of science and database coverage. Scientometrics, 93(3), 831–846. doi:10.1007/s11192-012-0732-7.

    Article  Google Scholar 

  • Moore, R. A., Derry, S., & McQuay, H. J. (2010). Fraud or flawed: Adverse impact of fabricated or poor quality research. Anaesthesia, 65(4), 327–330. doi:10.1111/j.1365-2044.2010.06295.x.

    Article  Google Scholar 

  • Nourse, C. R., Mattei, M. G., Gunning, P., & Byrne, J. A. (1998). Cloning of a third member of the D52 gene family indicates alternative coding sequence usage in D52-like transcripts. Biochimica et Biophysica Acta, 1443(1–2), 155–168.

    Article  Google Scholar 

  • Nuijten, M. B., Hartgerink, C. H. J., van Assen, M. A. L. M., Epskamp, S., & Wicherts, J. M. (2015). The prevalence of statistical reporting errors in psychology (1985–2013). Behavior Research Methods. doi:10.3758/s13428-015-0664-2.

    Google Scholar 

  • Pan, Z. Y., Yang, Y., Pan, H., Zhang, J., Liu, H., Yang, Y., et al. (2015). Lentivirus-mediated TPD52L2 depletion inhibits the proliferation of liver cancer cells in vitro. International Journal of Clinical and Experimental Medicine, 8(2), 2334–2341.

    Google Scholar 

  • Parolo, P. D. B., Pan, R. K., Ghosh, R., Huberman, B. A., Kaski, K., & Fortunato, S. (2015). Attention decay in science. Journal of Informetrics, 9(4), 734–745. doi:10.1016/j.joi.2015.07.006.

    Article  Google Scholar 

  • Pautasso, M. (2012). Publication growth in biological sub-fields: Patterns, predictability and sustainability. Sustainability, 4(12), 3234–3247. doi:10.3390/su4123234.

    Article  Google Scholar 

  • Retraction. (2016). Lentivirus-mediated TPD52L2 depletion inhibits the proliferation of liver cancer cells in vitro [Retraction]. International Journal of Clinical and Experimental Medicine, 9(6), 12416.

  • Roslan, N., Bièche, I., Bright, R. K., Lidereau, R., Chen, Y., & Byrne, J. A. (2014). TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Molecular Carcinogenesis, 53, 807–819. doi:10.1002/mc.22038.

    Article  Google Scholar 

  • Shehata, M., Bieche, I., Boutros, R., Weidenhofer, J., Fanayan, S., Spalding, L., et al. (2008). Non-redundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clinical Cancer Research, 14, 5050–5060. doi:10.1158/1078-0432.

    Article  Google Scholar 

  • Shvets, A. (2014). A method of automatic detection of pseudoscientific publications. In: D. Filev et al. (Eds.), Intelligent systems2014, advances in intelligent systems and computing (Vol. 323, pp. 533–539). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-11310-4_46.

  • Siebert, S., Machesky, L. M., & Insall, R. H. (2015). Overflow in science and its implications for trust. Elife. doi:10.7554/eLife.10825.

    Google Scholar 

  • Smith, R. (2006). Research misconduct: The poisoning of the well. Journal of the Royal Society of Medicine, 99(5), 232–237. doi:10.1258/jrsm.99.5.232.

    Article  Google Scholar 

  • Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology, 60(3), 538–556. doi:10.1002/asi.21001.

    Article  Google Scholar 

  • Steen, R. G. (2011a). Retractions in the scientific literature: Do authors deliberately commit research fraud? Journal of Medical Ethics, 37(2), 113–117. doi:10.1136/jme.2010.038125.

    Article  Google Scholar 

  • Steen, R. G. (2011b). Misinformation in the medical literature: What role do error and fraud play? Journal of Medical Ethics, 37(8), 498–503. doi:10.1136/jme.2010.041830.

    Article  Google Scholar 

  • Tian, M., Su, Y., & Ru, X. (2016). Perish or publish in China: Pressures on young Chinese scholars to publish in internationally indexed journals. Publications, 4, 9. doi:10.3390/publications4020009.

    Article  Google Scholar 

  • Tuzzi, A. (2010). What to put in the bag? Comparing and contrasting procedures for text clustering. Statistica Applicata-Italian Journal of Applied Statistics, 22(1), 81–98.

    Google Scholar 

  • van Dalen, H., & Henkens, K. (2012). Intended and unintended consequences of a publish-or-perish culture: A worldwide survey. JASIS&T, 63(7), 1282–1293. doi:10.1002/asi.22636.

    Article  Google Scholar 

  • Verma, S., Tabb, M. M., & Blumberg, B. (2009). Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer, 9, 3. doi:10.1186/1471-2407-9-3.

    Article  Google Scholar 

  • Wang, Z., Sun, J., Zhao, Y., Guo, W., Lv, K., & Zhang, Q. (2014). Lentivirus-mediated knockdown of tumor protein D52-like 2 inhibits glioma cell proliferation. Cellular and Molecular Biology (Noisy-le-grand), 60(1), 39–44.

    Google Scholar 

  • Wang, X., Xu, S., Peng, L., Wang, Z., Wang, C., Zhang, C., et al. (2012). Exploring scientists’ working timetable: Do scientists often work overtime? Journal of Informetrics, 6(4), 655–660. doi:10.1016/j.joi.2012.07.003.

    Article  Google Scholar 

  • White, C. (2005). Suspected research fraud: Difficulties of getting at the truth. BMJ, 331(7511), 281–288. doi:10.1136/bmj.331.7511.281.

    Article  Google Scholar 

  • Wilson, S. H., Bailey, A. M., Nourse, C. R., Mattei, M. G., & Byrne, J. A. (2001). Identification of MAL2, a novel member of the MAL proteolipid family, though interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics, 76(1–3), 81–88. doi:10.1006/geno.2001.6610.

    Article  Google Scholar 

  • Xu, J., Wang, W., Zhu, Z., Wei, Z., Yang, D., & Cai, Q. (2015). Tumor protein D52-like 2 accelerates gastric cancer cell proliferation in vitro. Cancer Biotherapy and Radiopharmaceuticals, 30(3), 111–116. doi:10.1089/cbr.2014.1766.

    Article  Google Scholar 

  • Yang, M., Wang, X., Jia, J., Gao, H., Chen, P., Sha, X., et al. (2015). Tumor protein D52-like 2 contributes to proliferation of breast cancer cells. Cancer Biotherapy and Radiopharmaceuticals, 30(1), 1–7. doi:10.1089/cbr.2014.1723.

    Article  Google Scholar 

  • Ye, X.-F., Yu, D.-H., & He, J. (2013). The rise in meta-analyses from China. Epidemiology, 24(2), 335–336. doi:10.1097/EDE.0b013e31828264be.

    Article  Google Scholar 

  • Zeng, W., & Resnik, D. (2010). Research integrity in China: Problems and prospects. Developing World Bioethics, 10(3), 164–171. doi:10.1111/j.1471-8847.2009.00263.x.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms Mara Hvistendahl for invaluable support and assistance. JAB thanks journal editors and peer reviewers for their assistance, and members of the Children’s Cancer Research Unit for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer A. Byrne or Cyril Labbé.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byrne, J.A., Labbé, C. Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines. Scientometrics 110, 1471–1493 (2017). https://doi.org/10.1007/s11192-016-2209-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2209-6

Keywords

  • Gene knockdown
  • Cancer
  • Cell lines
  • Publications
  • Intertextual distance
  • China