Scientometrics

, Volume 110, Issue 3, pp 1471–1493 | Cite as

Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines

Article

Abstract

Comparing 5 publications from China that described knockdowns of the human TPD52L2 gene in human cancer cell lines identified unexpected similarities between these publications, flaws in experimental design, and mis-matches between some described experiments and the reported results. Following communications with journal editors, two of these TPD52L2 publications have been retracted. One retraction notice stated that while the authors claimed that the data were original, the experiments had been out-sourced to a biotechnology company. Using search engine queries, automatic text-analysis, different similarity measures, and further visual inspection, we identified 48 examples of highly similar papers describing single gene knockdowns in 1–2 human cancer cell lines that were all published by investigators from China. The incorrect use of a particular TPD52L2 shRNA sequence as a negative or non-targeting control was identified in 30/48 (63%) of these publications, using a combination of Google Scholar searches and visual inspection. Overall, these results suggest that some publications describing the effects of single gene knockdowns in human cancer cell lines may include the results of experiments that were not performed by the authors. This has serious implications for the validity of such results, and for their application in future research.

Keywords

Gene knockdown Cancer Cell lines Publications Intertextual distance China 

References

  1. Altman, D. G. (2002). Poor-quality medical research: What can journals do? JAMA, 287(21), 2765–2767. doi:10.1001/jama.287.21.2765.CrossRefGoogle Scholar
  2. Amancio, D. R. (2015). Comparing the topological properties of real and artificially generated scientific manuscripts. Scientometrics, 105(4), 1763–1779. doi:10.1007/s11192-015-1637-z.CrossRefGoogle Scholar
  3. Amancio, D. R., Aluisio, S. M., Oliveira, O. N., & Costa, L. da F. (2012). Complex networks analysis of language complexity. Europhysics Letters, 100(5), 58002. doi:10.1209/0295-5075/100/58002.
  4. Anderson, M. S., Ronning, E. A., De Vries, R., & Martinson, B. C. (2007). The perverse effects of competition on scientists’ work and relationships. Science and Engineering Ethics, 13(4), 437–461. doi:10.1007/s11948-007-9042-5.CrossRefGoogle Scholar
  5. Argamon, S., & Levitan, S. (2005). Measuring the usefulness of function words for authorship attribution. In Proceeding of the 2005 ACH/ALLC conference, June 2005, Victoria, BC, Canada.Google Scholar
  6. Ausloos, M., Nedic, O., Fronczak, A., & Fronczak, P. (2016). Quantifying the quality of peer reviewers through Zipf’s law. Scientometrics, 106(1), 347–368. doi:10.1007/s11192-015-1704-5.CrossRefGoogle Scholar
  7. Bik, E. M., Casadevall, A., & Fang, F. C. (2016). The prevalence of inappropriate image duplication in biomedical research publications. mBio, 7(3), e00809–e00816. doi:10.1128/mBio.00809-16.CrossRefGoogle Scholar
  8. Bohannon, J. (2015). Hoax-detecting software spots fake papers. Science, 348(6230), 18–19. doi:10.1126/science.aab0381.MathSciNetCrossRefGoogle Scholar
  9. Bornmann, L. (2013). Research misconduct-definitions, manifestations and extent. Publications, 1, 87–98. doi:10.3390/publications1030087.CrossRefGoogle Scholar
  10. Bowen, A., & Casadevall, A. (2015). Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11335–11340. doi:10.1073/pnas.1504955112.CrossRefGoogle Scholar
  11. Boyer-Guittaut, M., Poillet, L., Liang, Q., Bôle-Richard, E., Ouyang, X., Benavides, G. A., et al. (2014). The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy, 10(6), 986–1003. doi:10.4161/auto.28390.CrossRefGoogle Scholar
  12. Butler, L. (2003). Explaining Australia’s increased share of ISI publications—The effects of a funding formula based on publication counts. Research Policy, 32(1), 143–155. doi:10.1016/S0048-7333(02)00007-0.CrossRefGoogle Scholar
  13. Byrne, J. A., Frost, S., Chen, Y., & Bright, R. K. (2014). Tumor protein D52 (TPD52) and cancer—Oncogene understudy, or understudied oncogene? Tumour Biology, 35(8), 7369–7382. doi:10.1007/s13277-014-2006-x.CrossRefGoogle Scholar
  14. Capes-Davis, A., & Neve, R. M. (2016). Authentication: A standard problem or a problem of standards? PLoS Biology, 14(6), e1002477. doi:10.1371/journal.pbio.1002477.CrossRefGoogle Scholar
  15. Carpena, P., Bernaola-Galván, P., Hackenberg, M., Coronado, A. V., & Oliver, J. L. (2009). Level statistics of words: Finding keywords in literary texts and symbolic sequences. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 79(3 Pt 2), 035102. doi:10.1103/PhysRevE.79.035102.CrossRefGoogle Scholar
  16. Casadevall, A., Steen, R. G., & Fang, F. C. (2014). Sources of error in the retracted scientific literature. The FASEB Journal, 28(9), 3847–3855. doi:10.1096/fj.14-256735.CrossRefGoogle Scholar
  17. Citron, D. T., & Ginsparg, P. (2015). Patterns of text reuse in a scientific corpus. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 25–30. doi:10.1073/pnas.1415135111.CrossRefGoogle Scholar
  18. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, IT-13, 21–27.CrossRefMATHGoogle Scholar
  19. Delgado López-Cózar, E., Robinson-García, N., & Torres-Salinas, D. (2014). The Google scholar experiment: How to index false papers and manipulate bibliometric indicators. Journla of the Association for Information Science and Technology, 65, 446–454. doi:10.1002/asi.23056.CrossRefGoogle Scholar
  20. Djuric, D. (2015). Penetrating the omerta of predatory publishing: The Romanian connection. Science and Engineering Ethics, 21(1), 183–202. doi:10.1007/s11948-014-9521-4.CrossRefGoogle Scholar
  21. Fahrenberg, U., Biondi, F., Corre, K., Jégourel, C., Kongshøj, S., & Legay, A. (2014). Measuring global similarity between texts. In L. Besacier et al. (Eds.), Statistical language and speech processing, lecture notes in computer science (Vol. 8791, pp. 220–232). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-11397-5_17.
  22. Fanelli, D. (2009). How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE, 4(5), e5738. doi:10.1371/journal.pone.0005738.CrossRefGoogle Scholar
  23. Fang, F. C., & Casadevall, A. (2015). Competitive science: Is competition ruining science? Infection and Immunity, 83(4), 1229–1233. doi:10.1128/IAI.02939-14.CrossRefGoogle Scholar
  24. Fang, F. C., Steen, R. G., & Casadevall, A. (2012). Misconduct accounts for the majority of retracted scientific publications. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 17028–17033. doi:10.1073/pnas.1212247109.CrossRefGoogle Scholar
  25. Ferguson, C., Marcus, A., & Oransky, I. (2014). The peer-review scam. Nature, 515(7528), 480–482.CrossRefGoogle Scholar
  26. Ginsparg, P. (2014). Automated screening: Arxiv screens spot fake papers. Nature, 508(7494), 44. doi:10.1038/508044a.CrossRefGoogle Scholar
  27. He, Y., Chen, F., Cai, Y., & Chen, S. (2015). Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International, 39(3), 264–271. doi:10.1002/cbin.10388.CrossRefGoogle Scholar
  28. He, Y., Chen, F., Cai, Y., & Chen, S. (2016). Retracted: Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International, 40(3), 361. doi:10.1002/cbin.10593.CrossRefGoogle Scholar
  29. Hockey, S., & Martin, J. (1988). OCP users’ manual. Oxford: Oxford University Computing Service.Google Scholar
  30. Hvistendahl, M. (2013). China’s publication bazaar. Science, 342(6162), 1035–1039. doi:10.1126/science.342.6162.1035.CrossRefGoogle Scholar
  31. Konwisorz, A., Springwald, A., Haselberger, M., Goerse, R., Ortmann, O., & Treeck, O. (2010). Knockdown of ICB-1 gene enhanced estrogen responsiveness of ovarian and breast cancer cells. Endocrine-Related Cancer, 17(1), 147–157. doi:10.1677/ERC-09-0095.CrossRefGoogle Scholar
  32. Kornfeld, D. S. (2012). Perspective: Research misconduct: The search for a remedy. Academic Medicine, 87(7), 877–882. doi:10.1097/ACM.0b013e318257ee6a.CrossRefGoogle Scholar
  33. Kreutzberg, G. W. (2004). The rules of good science. EMBO Reports, 5(4), 330–332. doi:10.1038/sj.embor.7400136.CrossRefGoogle Scholar
  34. Labbé, C., & Labbé, D. (2012). Detection of hidden intertextuality in the scientific publications. In 11th International conference on textual data statistical analysis, 2012, Liège, Belgium (pp. 537–551). Liège: LASLA - SESLA.Google Scholar
  35. Labbé, C., & Labbé, D. (2013). Duplicate and fake publications in the scientific literature: How many SCIgen papers in computer science? Scientometrics, 94(1), 379–396. doi:10.1007/s11192-012-0781-y.CrossRefGoogle Scholar
  36. Lesk, M. (2015). How many scientific papers are not original? Proceedings of the National Academy of Sciences of the United States of America, 112(1), 6–7. doi:10.1073/pnas.1422282112.CrossRefGoogle Scholar
  37. Lin, S. (2013). Why serious academic fraud occurs in China. Learned Publishing, 26(1), 24–27. doi:10.1087/20130105.CrossRefGoogle Scholar
  38. Mehri, A., Darooneh, A. H., & Shariati, A. (2012). The complex networks approach for authorship attribution of books. Physica A: Statistical Mechanics and its Applications, 391(7), 2429–2437. doi:10.1016/j.physa.2011.12.011.CrossRefGoogle Scholar
  39. Michels, C., & Schmoch, U. (2012). The growth of science and database coverage. Scientometrics, 93(3), 831–846. doi:10.1007/s11192-012-0732-7.CrossRefGoogle Scholar
  40. Moore, R. A., Derry, S., & McQuay, H. J. (2010). Fraud or flawed: Adverse impact of fabricated or poor quality research. Anaesthesia, 65(4), 327–330. doi:10.1111/j.1365-2044.2010.06295.x.CrossRefGoogle Scholar
  41. Nourse, C. R., Mattei, M. G., Gunning, P., & Byrne, J. A. (1998). Cloning of a third member of the D52 gene family indicates alternative coding sequence usage in D52-like transcripts. Biochimica et Biophysica Acta, 1443(1–2), 155–168.CrossRefGoogle Scholar
  42. Nuijten, M. B., Hartgerink, C. H. J., van Assen, M. A. L. M., Epskamp, S., & Wicherts, J. M. (2015). The prevalence of statistical reporting errors in psychology (1985–2013). Behavior Research Methods. doi:10.3758/s13428-015-0664-2.Google Scholar
  43. Pan, Z. Y., Yang, Y., Pan, H., Zhang, J., Liu, H., Yang, Y., et al. (2015). Lentivirus-mediated TPD52L2 depletion inhibits the proliferation of liver cancer cells in vitro. International Journal of Clinical and Experimental Medicine, 8(2), 2334–2341.Google Scholar
  44. Parolo, P. D. B., Pan, R. K., Ghosh, R., Huberman, B. A., Kaski, K., & Fortunato, S. (2015). Attention decay in science. Journal of Informetrics, 9(4), 734–745. doi:10.1016/j.joi.2015.07.006.CrossRefGoogle Scholar
  45. Pautasso, M. (2012). Publication growth in biological sub-fields: Patterns, predictability and sustainability. Sustainability, 4(12), 3234–3247. doi:10.3390/su4123234.CrossRefGoogle Scholar
  46. Retraction. (2016). Lentivirus-mediated TPD52L2 depletion inhibits the proliferation of liver cancer cells in vitro [Retraction]. International Journal of Clinical and Experimental Medicine, 9(6), 12416.Google Scholar
  47. Roslan, N., Bièche, I., Bright, R. K., Lidereau, R., Chen, Y., & Byrne, J. A. (2014). TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Molecular Carcinogenesis, 53, 807–819. doi:10.1002/mc.22038.CrossRefGoogle Scholar
  48. Shehata, M., Bieche, I., Boutros, R., Weidenhofer, J., Fanayan, S., Spalding, L., et al. (2008). Non-redundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clinical Cancer Research, 14, 5050–5060. doi:10.1158/1078-0432.CrossRefGoogle Scholar
  49. Shvets, A. (2014). A method of automatic detection of pseudoscientific publications. In: D. Filev et al. (Eds.), Intelligent systems2014, advances in intelligent systems and computing (Vol. 323, pp. 533–539). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-11310-4_46.
  50. Siebert, S., Machesky, L. M., & Insall, R. H. (2015). Overflow in science and its implications for trust. Elife. doi:10.7554/eLife.10825.Google Scholar
  51. Smith, R. (2006). Research misconduct: The poisoning of the well. Journal of the Royal Society of Medicine, 99(5), 232–237. doi:10.1258/jrsm.99.5.232.CrossRefGoogle Scholar
  52. Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology, 60(3), 538–556. doi:10.1002/asi.21001.CrossRefGoogle Scholar
  53. Steen, R. G. (2011a). Retractions in the scientific literature: Do authors deliberately commit research fraud? Journal of Medical Ethics, 37(2), 113–117. doi:10.1136/jme.2010.038125.CrossRefGoogle Scholar
  54. Steen, R. G. (2011b). Misinformation in the medical literature: What role do error and fraud play? Journal of Medical Ethics, 37(8), 498–503. doi:10.1136/jme.2010.041830.CrossRefGoogle Scholar
  55. Tian, M., Su, Y., & Ru, X. (2016). Perish or publish in China: Pressures on young Chinese scholars to publish in internationally indexed journals. Publications, 4, 9. doi:10.3390/publications4020009.CrossRefGoogle Scholar
  56. Tuzzi, A. (2010). What to put in the bag? Comparing and contrasting procedures for text clustering. Statistica Applicata-Italian Journal of Applied Statistics, 22(1), 81–98.Google Scholar
  57. van Dalen, H., & Henkens, K. (2012). Intended and unintended consequences of a publish-or-perish culture: A worldwide survey. JASIS&T, 63(7), 1282–1293. doi:10.1002/asi.22636.CrossRefGoogle Scholar
  58. Verma, S., Tabb, M. M., & Blumberg, B. (2009). Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer, 9, 3. doi:10.1186/1471-2407-9-3.CrossRefGoogle Scholar
  59. Wang, Z., Sun, J., Zhao, Y., Guo, W., Lv, K., & Zhang, Q. (2014). Lentivirus-mediated knockdown of tumor protein D52-like 2 inhibits glioma cell proliferation. Cellular and Molecular Biology (Noisy-le-grand), 60(1), 39–44.Google Scholar
  60. Wang, X., Xu, S., Peng, L., Wang, Z., Wang, C., Zhang, C., et al. (2012). Exploring scientists’ working timetable: Do scientists often work overtime? Journal of Informetrics, 6(4), 655–660. doi:10.1016/j.joi.2012.07.003.CrossRefGoogle Scholar
  61. White, C. (2005). Suspected research fraud: Difficulties of getting at the truth. BMJ, 331(7511), 281–288. doi:10.1136/bmj.331.7511.281.CrossRefGoogle Scholar
  62. Wilson, S. H., Bailey, A. M., Nourse, C. R., Mattei, M. G., & Byrne, J. A. (2001). Identification of MAL2, a novel member of the MAL proteolipid family, though interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics, 76(1–3), 81–88. doi:10.1006/geno.2001.6610.CrossRefGoogle Scholar
  63. Xu, J., Wang, W., Zhu, Z., Wei, Z., Yang, D., & Cai, Q. (2015). Tumor protein D52-like 2 accelerates gastric cancer cell proliferation in vitro. Cancer Biotherapy and Radiopharmaceuticals, 30(3), 111–116. doi:10.1089/cbr.2014.1766.CrossRefGoogle Scholar
  64. Yang, M., Wang, X., Jia, J., Gao, H., Chen, P., Sha, X., et al. (2015). Tumor protein D52-like 2 contributes to proliferation of breast cancer cells. Cancer Biotherapy and Radiopharmaceuticals, 30(1), 1–7. doi:10.1089/cbr.2014.1723.CrossRefGoogle Scholar
  65. Ye, X.-F., Yu, D.-H., & He, J. (2013). The rise in meta-analyses from China. Epidemiology, 24(2), 335–336. doi:10.1097/EDE.0b013e31828264be.CrossRefGoogle Scholar
  66. Zeng, W., & Resnik, D. (2010). Research integrity in China: Problems and prospects. Developing World Bioethics, 10(3), 164–171. doi:10.1111/j.1471-8847.2009.00263.x.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Molecular Oncology Laboratory, Children’s Cancer Research Unit, Kids Research InstituteThe Children’s Hospital at WestmeadWestmeadAustralia
  2. 2.The University of Sydney Discipline of Child and Adolescent Health, The Children’s Hospital at WestmeadWestmeadAustralia
  3. 3.University of Grenoble Alpes, Laboratoire LIG - Bâtiment IMAG - 700 Avenue CentraleDomaine Universitaire de Saint-Martin-d’HèresGrenoble Cedex 9France

Personalised recommendations