, Volume 110, Issue 2, pp 867–877 | Cite as

How long do top scientists maintain their stardom? An analysis by region, gender and discipline: evidence from Italy

  • Giovanni Abramo
  • Ciriaco Andrea D’Angelo
  • Anastasiia Soldatenkova


We investigate the question of how long top scientists retain their stardom. We observe the research performance of all Italian professors in the sciences over three consecutive four-year periods, between 2001 and 2012. The top scientists of the first period are identified on the basis of research productivity, and their performance is then tracked through time. The analyses demonstrate that more than a third of the nation’s top scientists maintain this status over the three consecutive periods, with higher shares occurring in the life sciences and lower ones in engineering. Compared to males, females are less likely to maintain top status. There are also regional differences, among which top status is less likely to survive in southern Italy than in the north. Finally we investigate the longevity of unproductive professors, and then check whether the career progress of the top and unproductive scientists is aligned with their respective performances. The results appear to have implications for national policies on academic recruitment and advancement.


Research productivity Research evaluation Matthew effect Italy Bibliometrics 


  1. Abramo, G., Cicero, T., & D’Angelo, C. A. (2011). Assessing the varying level of impact measurement accuracy as a function of the citation window length. Journal of Informetrics, 5(4), 659–667.CrossRefGoogle Scholar
  2. Abramo, G., Cicero, T., & D’Angelo, C. A. (2012a). Revisiting the scaling of citations for research assessment. Journal of Informetrics, 6(4), 470–479.CrossRefGoogle Scholar
  3. Abramo, G., Cicero, T., & D’Angelo, C. A. (2013a). The impact of unproductive and top researchers on overall university research performance. Journal of Informetrics, 7(1), 166–175.CrossRefGoogle Scholar
  4. Abramo, G., & D’Angelo, C. A. (2014). How do you define and measure research productivity? Scientometrics, 101(2), 1129–1144.CrossRefGoogle Scholar
  5. Abramo, G., & D’Angelo, C. A. (2016a). A farewell to the MNCS and like size-independent indicators. Journal of Informetrics, 10(3), 646–651.CrossRefGoogle Scholar
  6. Abramo, G., & D’Angelo, C. A. (2016b). A farewell to the MNCS and like size-independent indicators: Rejoinder. Journal of Informetrics, 10(3), 679–683.CrossRefGoogle Scholar
  7. Abramo, G., D’Angelo, C. A., & Caprasecca, A. (2009). The contribution of star scientists to overall sex differences in research productivity. Scientometrics, 81(1), 137–156.CrossRefGoogle Scholar
  8. Abramo, G., D’Angelo, C. A., & Cicero, T. (2012b). What is the appropriate length of the publication period over which to assess research performance? Scientometrics, 93(3), 1005–1017.CrossRefGoogle Scholar
  9. Abramo, G., D’Angelo, C. A., & Rosati, F. (2013b). The importance of accounting for the number of co-authors and their order when assessing research performance at the individual level in the life sciences. Journal of Informetrics, 7(1), 198–208.CrossRefGoogle Scholar
  10. Abramo, G., D’Angelo, C. A., & Rosati, F. (2015). The determinants of academic career advancement: evidence from Italy. Science and Public Policy, 42(6), 761–774.Google Scholar
  11. Abramo, G., D’Angelo, C. A., & Rosati, F. (2016). The North–South divide in the Italian higher education system. Scientometrics. doi:10.1007/s11192-016-2141-9.Google Scholar
  12. Azoulay, P., Zivin, J. S. G., & Wang, J. (2010). Superstar extinction. Quarterly Journal of Economics, 125(2), 549–589.CrossRefGoogle Scholar
  13. Burrell, Q. L. (2003). Predicting future citation behavior. Journal of the American Society for Information Science and Technology, 54(5), 372–378.CrossRefGoogle Scholar
  14. D’Angelo, C. A., Giuffrida, C., & Abramo, G. (2011). A heuristic approach to author name disambiguation in bibliometrics databases for large-scale research assessments. Journal of the American Society for Information Science and Technology, 62(2), 257–269.CrossRefGoogle Scholar
  15. Daniele, V., & Malanima, P. (2011). Il divario Nord-Sud in Italia, 1861–2011 (Vol. 273). Soveria Mannelli: Rubbettino Editore. ISBN 9788849831290.Google Scholar
  16. Gerosa, M. (2001). Competition for academic promotion in Italy. Lancet, 357(9263), 1208.CrossRefGoogle Scholar
  17. Glänzel, W., & Schubert, A. (1988). Characteristic scores and scales in assessing citation impact. Journal of Information Science, 14(2), 123–127.CrossRefGoogle Scholar
  18. Hess, A., & Rothaermel, F. T. (2012). Intellectual human capital and the emergence of biotechnology: Trends and patterns, 1974–2006. IEEE Transactions on Engineering Management, 59(1), 65–76.CrossRefGoogle Scholar
  19. ISTAT (2015). Conti economici territoriali. Last accessed on 14 Nov 2016 at
  20. Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.CrossRefGoogle Scholar
  21. Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. The American Economic Review, 81(1), 114–132.Google Scholar
  22. Link, A. N., Siegel, D. S., & Bozeman, B. (2007). An empirical analysis of the propensity of academics to engage in informal university technology transfer. Industrial and Corporate Change, 16(4), 641–655.CrossRefGoogle Scholar
  23. Long, R., Crawford, A., White, M., & Davis, K. (2009). Determinants of faculty research productivity in information systems: An empirical analysis of the impact of academic origin and academic affiliation. Scientometrics, 78(2), 231–260.CrossRefGoogle Scholar
  24. Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.CrossRefGoogle Scholar
  25. Miller, J. C., Coble, K. H., & Lusk, J. L. (2013). Evaluating top faculty researchers and the incentives that motivate them. Scientometrics, 97(3), 519–533.CrossRefGoogle Scholar
  26. Nowell, A., & Hedges, L. V. (1998). Trends in gender differences in academic achievement from 1960 to 1994: An analysis of differences in mean, variance, and extreme scores. Sex Roles, 39(1), 21–43.CrossRefGoogle Scholar
  27. Perotti, R. (2008). L’università truccata. Torino: Einaudi. ISBN 9788806193607.Google Scholar
  28. Petersen, A. M., Fortunato, S., Pan, R. K., Kaski, K., Penner, O., Rungi, A., et al. (2014). Reputation and impact in academic careers. Proceedings of the National Academy of Sciences, 111(43), 15316–15321.CrossRefGoogle Scholar
  29. Petersen, A. M., Jung, W. S., Yang, J. S., & Stanley, H. E. (2011). Quantitative and empirical demonstration of the Matthew effect in a study of career longevity. Proceedings of the National Academy of Sciences, 108(1), 18–23.CrossRefGoogle Scholar
  30. SVIMEZ (2015). Rapporto SVIMEZ 2015 sull’economia del Mezzogiorno. Last accessed on 14 Nov 2016 at
  31. Viesti, G. (2015). Nuovi divari. Un’indagine sulle Università of the Nord e del Sud. Rapporto RES (Istituto di Ricerca Economia e Società in Sicilia). Last accessed on 14 Nov 2016 at
  32. Zucker, L. G., & Darby, M. R. (1997). Present at the biotechnological revolution: Transformation of technological identity for a large incumbent pharmaceutical firm. Research Policy, 26(4–5), 429–446.CrossRefGoogle Scholar
  33. Zucker, L. G., Darby, M. R., & Torero, M. (2002). Labor mobility from academe to commerce. Journal of Labor Economics, 20(3), 629–660.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Giovanni Abramo
    • 1
  • Ciriaco Andrea D’Angelo
    • 2
    • 3
  • Anastasiia Soldatenkova
    • 2
  1. 1.Laboratory for Studies in Research Evaluation, Institute for System Analysis and Computer Science (IASI-CNR)National Research Council of ItalyRomeItaly
  2. 2.Department of Engineering and ManagementUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Laboratory for Studies in Research EvaluationInstitute for System Analysis and Computer Science (IASI-CNR)RomeItaly

Personalised recommendations