Advertisement

Scientometrics

, Volume 109, Issue 3, pp 1725–1759 | Cite as

A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI

  • Hao Wang
  • Sanhong Deng
  • Xinning Su
Article
  • 746 Downloads

Abstract

This study proposes a method to automatically establish a narrow-sense knowledge structure for Chinese Library and Information Science (CLIS) using data from the Chinese Social Science Citation Index. The method applies multi-level clustering, using ontological ideas as theoretical guidance and ontology learning techniques as technical means. Knowledge categories generated are checked for cohesion and coupling through hierarchical clustering analysis and multidimensional scaling analysis in order to verify the accuracy and rationality of the narrow-sense knowledge structure of CLIS. Finally, the narrow-sense knowledge structure is expanded to a broad sense. Using scholars as objects in examples, this study discusses the semantic associations between topic knowledge and the other academic objects in CLIS from the micro-, meso-, and macro-levels, so as to fully explore the broad-sense knowledge structure of CLIS for knowledge analysis and applications.

Keywords

Chinese Library and Information Science (CLIS) Discipline knowledge structure (DKS) Chinese Social Science Citation Index (CSSCI) Multi-level clustering (MLC) Hierarchical clustering analysis (HCA) Multidimensional scaling analysis (MDSA) Social network analysis (SNA) 

Notes

Acknowledgments

This work was supported by Jiangsu Province’s Natural Science Foundation Project named “Study on Chinese Ontology Learning-Oriented Patent Forewarning” (No. BK20130587), as well as a major program of the National Social Science Foundation of China named “Studies on Deep Polymerization and Services of Network Information Resource-Oriented Discipline Field” (No. 12&ZD221).

References

  1. Aleixandre, J. L., Aleixandre-Tudo, J. L., Bolanos-Pizarro, M., et al. (2015). Mapping the scientific research in organic farming: A bibliometric review. Scientometrics, 105(1), 295–309.CrossRefGoogle Scholar
  2. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.Google Scholar
  3. Calabretta, G., Durisin, B., & Ogliengo, M. (2011). Uncovering the intellectual structure of research in business ethics: A journey through the history, the classics, and the pillars of Journal of Business Ethics. Journal of Business Ethics, 104(4), 499–524.CrossRefGoogle Scholar
  4. Chang, Y. W. (2012). Tracking scientometric research in Taiwan using bibliometric and content analysis. Journal of Library and Information Studies, 10(2), 1–20.Google Scholar
  5. Charvet, F. F., Cooper, M. C., & Gardner, J. T. (2008). The intellectual structure of supply chain management: A bibliometric approach. Journal of Business Logistics, 29(1), 47–73.CrossRefGoogle Scholar
  6. Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  7. Chen, L. C., & Lien, Y. H. (2011). Using author co-citation analysis to examine the intellectual structure of e-learning: A MIS perspective. Scientometrics, 89(3), 867–886.CrossRefGoogle Scholar
  8. Chen, C. M., & Paul, R. J. (2001). Visualizing a knowledge domain’s intellectual structure. Computer, 34(3), 65–71.CrossRefGoogle Scholar
  9. Cho, J. (2014). Intellectual structure of the institutional repository field: A co-word analysis. Journal of Information Science, 40(3), 386–397.CrossRefGoogle Scholar
  10. Danell, J. A. B. (2014). Reception of integrative and complementary medicine (ICM) in scientific journals: A citation and co-word analysis. Scientometrics, 98(2), 807–821.CrossRefGoogle Scholar
  11. Darvish, H., & Tonta, Y. (2016). Diffusion of nanotechnology knowledge in Turkey and its network structure. Scientometrics, 107(2), 569–592.CrossRefGoogle Scholar
  12. de Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. UK: Cambridge University Press.CrossRefGoogle Scholar
  13. Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: A co-word analysis. Scientometrics, 101(1), 273–290.CrossRefGoogle Scholar
  14. Erserim, A. (2016). Intellectual structure of accounting research: A historical review on the Journal of Accounting Organization Society. Accounting and Finance Research, 5(2), 1–9.CrossRefGoogle Scholar
  15. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, Portland, Oregon (pp. 226–231).Google Scholar
  16. Falconer, S. (2015). OntoGraf. http://protegewiki.stanford.edu/wiki/Onto-Graf. Accessed by 2015-07-01.
  17. Galvagno, M. (2011). The intellectual structure of the anti-consumption and consumer resistance field: An author co-citation analysis. European Journal of Marketing, 45(11–12), 1688–1701.CrossRefGoogle Scholar
  18. Garcia-Lillo, F., Ubeda-Garcia, M., & Marco-Lajara, B. (2016). The intellectual structure of research in hospitality management: A literature review using bibliometric methods of the journal International Journal of Hospitality Management. International Journal of Hospitality Management, 52, 121–130.CrossRefGoogle Scholar
  19. Gonzalez-Alcaide, G., Castello-Cogollos, L., Navarro-Molina, C., et al. (2008). Library and information science research areas: Analysis of journal articles in LISA. Journal of the American Society for Information Science and Technology, 59(1), 150–154.CrossRefGoogle Scholar
  20. Hong, Y., Yao, Q., Yang, Y., et al. (2016). Knowledge structure and theme trends analysis on general practitioner research: A co-word perspective. BMC Family Practice, 17, 10.CrossRefGoogle Scholar
  21. Hooper, R. P. (2009). Towards an intellectual structure for hydrologic science. Hydrological Processes, 23(2), 353–355.CrossRefGoogle Scholar
  22. Hossain, M. G., Reza, A. H. M. S., Lutfun-Nessa, M., et al. (2013). Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization. Journal of the Geological Society of India, 81(3), 377–384.CrossRefGoogle Scholar
  23. Hu, C. P., Hu, J. M., & Deng, S. (2013). A co-word analysis of library and information science in China. Scientometrics, 97(2), 369–382.CrossRefGoogle Scholar
  24. Hult, G. T. M. (2016). JAMS 2010–2015: Literature themes and intellectual structure. Journal of the Academy of Marketing Science, 43(6), 663–669.CrossRefGoogle Scholar
  25. Jeong, S., & Kim, H. G. (2010). Intellectual structure of biomedical informatics reflected in scholarly events. Scientometrics, 85(2), 541–551.CrossRefGoogle Scholar
  26. Kim, H., & Lee, J. Y. (2008). Exploring the emerging intellectual structure of archival studies using text mining: 2001–2004. Journal of Information Science, 34(3), 356–369.CrossRefGoogle Scholar
  27. Kumar, K. M., & Reddy, A. R. M. (2016). A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method. Pattern Recognition, 58, 39–48.CrossRefGoogle Scholar
  28. Kurihara, T., Tomari, N., & Aratani, T. (2013). Trend of EASTS research in the past 20 years. In Proceedings of the eastern Asia society for transportation studies (Vol. 9).Google Scholar
  29. Leydesdorff, L., & Vaughan, L. (2006). Co-occurrence matrices and their applications in information science: Extending ACA to the Web environment. Journal of the American Society for Information Science and Technology, 57(12), 1616–1628.CrossRefGoogle Scholar
  30. Liu, Z. (2005). Visualizing the intellectual structure in urban studies: A journal co-citation analysis (1992–2002). Scientometrics, 62(3), 385–402.CrossRefGoogle Scholar
  31. Ma, R. M. (2012). Discovering and analyzing the intellectual structure and its evolution of LIS in China, 1998–2007. Scientometrics, 93(3), 645–659.CrossRefGoogle Scholar
  32. Ma, R., & Ni, C. (2011). The intellectual structure and its evolution of LIS in China based on the co-citation analysis. Journal of Library Science in China, 6, 17–26.Google Scholar
  33. Machado, R. D., Vargas-Quesada, B., & Leta, J. (2016). Intellectual structure in stem cell research: Exploring Brazilian scientific articles from 2001 to 2010. Scientometrics, 106(2), 525–537.CrossRefGoogle Scholar
  34. McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433–443.CrossRefGoogle Scholar
  35. Meyer, M., Zaggl, M. A., & Carley, K. M. (2011). Measuring CMOT’s intellectual structure and its development. Computational and Mathematical Organization Theory, 17(1), 1–34.CrossRefGoogle Scholar
  36. Milojevic, S., Sugimoto, C. R., Yang, E. J., et al. (2011). The cognitive structure of library and information science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933–1953.CrossRefGoogle Scholar
  37. Naghizadeh, R., Elahi, S., Manteghi, M., et al. (2015). Through the magnifying glass: An analysis of regional innovation models based on co-word and meta-synthesis methods. Quality & Quantity, 49(6), 2481–2505.CrossRefGoogle Scholar
  38. Nerur, S. P., Rasheed, A. A., & Natarajan, V. (2008). The intellectual structure of the strategic management field: An author co-citation analysis. Strategic Management Journal, 29(3), 319–336.CrossRefGoogle Scholar
  39. Olijnyk, N. V. (2015). A quantitative examination of the intellectual profile and evolution of information security from 1965 to 2015. Scientometrics, 105(2), 883–904.CrossRefGoogle Scholar
  40. Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for theinformation sciences. Journal of Information Science, 28(6), 441–453.CrossRefGoogle Scholar
  41. Park, H. W., & Leydesdorff, L. (2008). Korean journals in the Science Citation Index: What do they reveal about the intellectual structure of S & T in Korea? Scientometrics, 75(3), 439–462.CrossRefGoogle Scholar
  42. Persson, O., Danell, R., & Wiborg Schneider, J. (2009). How to use Bibexcel for various types of bibliometric analysis. In Åström, F., Danell, R., Larsen, B., & Schneider, J. (Eds.), International society for scientometrics and informetrics, Leuven, Belgium (pp. 9–24).Google Scholar
  43. Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management-1980–2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185–202.CrossRefGoogle Scholar
  44. Pinto, M. (2015). Viewing and exploring the subject area of information literacy assessment in higher education (2000–2011). Scientometrics, 102(1), 227–245.CrossRefGoogle Scholar
  45. Powers, J. H. (1995). On the intellectual structure of the human-communication discipline. Communication Education, 44(3), 191–222.CrossRefGoogle Scholar
  46. Pratt, J. A., Hauser, K., & Sugimoto, C. R. (2012). Defining the intellectual structure of information systems and related college of business disciplines: A bibliometric analysis. Scientometrics, 93(2), 279–304.CrossRefGoogle Scholar
  47. Prebor, G. (2010). Analysis of the interdisciplinary nature of library and information science. Journal of Librarianship and Information Science, 42(4), 256–267.CrossRefGoogle Scholar
  48. Protégé. http://Protege.stanford.edu. Accessed by July 1st, 2015.
  49. Ravikumar, S., Agrahari, A., & Singh, S. N. (2015). Mapping the intellectual structure of scientometrics: A co-word analysis of the Journal Scientometrics (2005–2010). Scientometrics, 102(1), 929–955.CrossRefGoogle Scholar
  50. Riviera, E. (2015). Testing the strength of the normative approach in citation theory through relational bibliometrics: The case of Italian sociology. Journal of the Association for Information Science and Technology, 66(6), 1178–1188.CrossRefGoogle Scholar
  51. Rusk, R. D., & Waters, L. (2015). A psycho-social system approach to well-being: Empirically deriving the five domains of positive functioning. Journal of Positive Psychology, 10(2), 141–152.CrossRefGoogle Scholar
  52. Samiee, S., & Chabowski, B. R. (2012). Knowledge structure in international marketing: A multi-method bibliometric analysis. Journal of the Academy of Marketing Science, 40(2), 364–386.CrossRefGoogle Scholar
  53. Sarafis, I. A., Trinder, P. W., & Zalzala, A. M. S. (2007). Nocea: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases. Applied Soft Computing, 7(3), 668–710.CrossRefGoogle Scholar
  54. SAS. http://www.sas.com/en_us/home.html. Accessed by July 1st, 2015.
  55. Seyedghorban, Z., Matanda, M. J., & LaPlaca, P. (2016). Advancing theory and knowledge in the business-to-business branding literature. Journal of Business Research, 69(8), 2664–2677.CrossRefGoogle Scholar
  56. Sluyter, A., Augustine, A. D., Bitton, M. C., et al. (2006). The recent intellectual structure of geography. Geographical Review, 96(4), 594–608.CrossRefGoogle Scholar
  57. Song, M., & Kim, S. Y. (2013). Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics, 96(1), 183–201.CrossRefGoogle Scholar
  58. SPSS. http://www-01.ibm.com/software/analytics/spss/. Accessed by July 1st, 2015.
  59. Su, X. (2007). Report on the academic influence of research achievement in China’s humanities and social sciences. Beijing: China Social Sciences Publishing House.Google Scholar
  60. Su, X., & Zou, Z. (2011). Report on the academic influence of research achievement in China’s humanities and social sciences (2011). Beijing: Higher Education Press.Google Scholar
  61. Torres-Salinas, D., & Moed, H. F. (2009). Library catalog analysis as a tool in studies of social sciences and humanities: An exploratory study of published book titles in Economics. Journal of Informetrics, 3(1), 9–26.CrossRefGoogle Scholar
  62. Triventi, M. (2014). Higher education regimes: An empirical classification of higher education systems and its relationship with student accessibility. Quality & Quantity, 48(3), 1685–1703.CrossRefGoogle Scholar
  63. Tseng, Y. H., & Tsay, M. Y. (2013). Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR. Scientometrics, 95(2), 503–528.CrossRefGoogle Scholar
  64. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  65. Wang, H. (2010). Information resource network model and its application. Nanjing: Nanjing University Press.Google Scholar
  66. Wang, C. H., Lee, Y. D., Chou, H. L., & Kuo, J. H. (2014). Identifying the intellectual structure of risk management studies. In Proceedings of IEEE workshop on electronics, computer and applications (IWECA), Ottawa, Canada (pp. 964–968).Google Scholar
  67. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of The American Society for Information Science, 49(4), 327–355.Google Scholar
  68. Wolfram, D., & Zhao, Y. H. (2014). A comparison of journal similarity across six disciplines using citing discipline analysis. Journal of Informetrics, 8(4), 840–853.CrossRefGoogle Scholar
  69. Yan, B. N., Lee, T. S., & Lee, T. P. (2015). Mapping the intellectual structure of the internet of things (IoT) field (2000–2014): A co-word analysis. Scientometrics, 105(2), 1285–1300.CrossRefGoogle Scholar
  70. Yang, S. L., Han, R. Z., Wolfram, D., et al. (2016). Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis. Journal of Informetrics, 10(1), 132–150.CrossRefGoogle Scholar
  71. Yoo, Y. J., Lee, J. Y., & Choi, S. (2013). Intellectual structure of Korean theology 2000–2008: Presbyterian theological journals. Journal of Information Science, 39(3), 307–318.CrossRefGoogle Scholar
  72. Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD international conference on management of data (Vol. 25, pp. 103–114).Google Scholar
  73. Zong, Q. J., Shen, H. Z., Yuan, Q. J., et al. (2013). Doctoral dissertations of Library and Information Science in China: A co-word analysis. Scientometrics, 94(2), 781–799.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.School of Information Management of Nanjing UniversityNanjingChina

Personalised recommendations