Skip to main content
Log in

Creating impact in the digital space: digital practice dependency in communities of digital scientific innovations

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Modern science has become collaborative and digital. The Internet has supported the emergence of scientific digital platforms that globally connect programmers and users of novel digital scientific products such as scientific interactive software tools. These digital scientific innovations complement traditional text-based products like journal publications. This article is focused on the scientific impact of a platform’s programming community that produces these digital scientific innovations. The article’s main theoretical argument is that beyond an individual’s contribution efforts to these innovations, a new social structure affects his scientific recognition through citations of his tools in text-based publications. Taking a practice theory lens, we introduce the concept of a digital practice structure that emerges from the digital innovation work practice, performed by programmers who jointly work on a tool. This digital practice creates dependence forces among the community members in an analogy to Newton’s gravity concept. Our model represents such dependencies in a spatial autocorrelative model. We empirically estimate this model using data of the programming community of nanoHUB in which 477 nanotechnology tool programmers have contributed more than 715 million lines of code. Our results show that a programmer’s contributions to digital innovations may have positive effects, while the digital practice structure creates negative dependency effects. Colloquially speaking, being surrounded by star performers can be harmful. Our findings suggest that modeling scientific impact needs to account for a scientist’s contribution to programming communities that produce digital scientific innovations and the digital work structures in which these contributions are embedded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Some tools where significantly revised, and also renamed over the lifetime. However, the digital practice structures evolved across these tool versions and tool programmers formed new collaborations throughout the process.

  2. The operations team at Purdue has developed a detailed lexicon to search any publications with googlscholar.com that relate to nanoHUB and the simulation tool (and other resources) available on nanoHUB.org. This lexicon is refined on a regular basis. The search hits are than reviewed by a team of nanotechnology experts who add metadata to the tools.

  3. https://nanohub.org/resources/dda/citations.

References

  • Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.

    Article  Google Scholar 

  • Adler, B. T., & de Alfaro, L. (2007). A content-driven reputation system for the Wikipedia. In Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada: ACM, pp. 261–270.

  • Adler, B. T., de Alfaro, L., Pye, I., & Raman, V. (2008). Measuring author’s contribution to Wikipedia. In Proceedings of the 2008 international symposium on Wikis, 2008. Porto, Portugal, 8–10 Sept 2008.

  • Akerlof, G. A. (1997). Social distance and social decisions. Econometrica, 65(5), 1005–1027.

    Article  MathSciNet  Google Scholar 

  • Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Anselin, L. (2002). Under the hood issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.

    Article  Google Scholar 

  • Arazy, O., Stroulia, E., Ruecker, S., Arias, C., Fiorentino, C., Ganev, V., et al. (2010). Recognizing contributions in Wikis: Authorship categories, algorithms, and visualizations. Journal of the American Society for Information Science and Technology, 61(6), 1166–1179.

    Google Scholar 

  • Bateman, P. J., Gray, P. H., & Butler, B. S. (2011). Research note-the impact of community commitment on participation in online communities. Information Systems Research, 22(4), 841–854.

    Article  Google Scholar 

  • Bivand, R. (2015). Package ‘Spdep’: Spatial dependence: Weighting schemes, statistics and models. Repository CRAN.

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  MathSciNet  Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21(4), 375–395.

    Article  Google Scholar 

  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.

    Article  Google Scholar 

  • Burt, R. (1992). Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95–S120.

    Article  Google Scholar 

  • Contractor, N. S., & DeChurch, L. A. (2014). Integrating social networks and human social motives to achieve social influence at scale. Proceedings of National Academy of Science USA, 111(Suppl 4), 13650–13657.

    Article  Google Scholar 

  • Cook, K. S., & Whitmeyer, J. M. (1992). Two approaches to social structure: Exchange theory and network analysis. Annual Review of Sociology, 18, 109–127.

    Article  Google Scholar 

  • Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/libre open-source software development: What we know and what we do not know. ACM Computing Surveys (CSUR), 44(2), 7.

    Article  Google Scholar 

  • Crowston, K., Wei, K., Li, Q., & Howison, J. (2006). Core and periphery in free/libre and open source software team communications. In 39th Hawai’i International Conference on System System (HICSS), Hawaii: IEEE, pp. 118a–118a.

  • Dahlander, L., & O’Mahony, S. (2011). Progressing to the center: Coordinating project work. Organization Science, 22(4), 961–979.

    Article  Google Scholar 

  • Dall’Asta, L., Marsili, M., & Pin, P. (2012). Collaboration in social networks. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4395–4400.

    Article  Google Scholar 

  • Faraj, S., & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization Science, 22(6), 1464–1480.

    Article  Google Scholar 

  • Feldman, M. S., & Orlikowski, W. J. (2011). Theorizing practice and practicing theory. Organization Science, 22(5), 1240–1253.

    Article  Google Scholar 

  • Fleming, L., & Waguespack, D. M. (2007). Brokerage, boundary spanning, and leadership in open innovation communities. Organization Science, 18(2), 165–180.

    Article  Google Scholar 

  • Franzoni, C., & Sauermann, H. (2014). Crowd science: The organization of scientific research in open collaborative projects. Research Policy, 43(1), 1–20.

    Article  Google Scholar 

  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  • Fujimoto, K., Chou, C. P., & Valente, T. W. (2011). The network autocorrelation model using two-mode data: Affiliation exposure and potential bias in the autocorrelation parameter. Soc Networks, 33, 231–243.

    Article  Google Scholar 

  • García Muñiz, A. S., & Ramos Carvajal, C. (2006). Core/periphery structure models: An alternative methodological proposal. Social Networks, 28(4), 442–448.

    Article  Google Scholar 

  • Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? Network cohesion, structural holes, and the adaptations of social capital. Organization Science, 11(2), 183–196.

    Article  Google Scholar 

  • Gawer, A. (2014). Bridging differing perspectives on technological platforms: Toward an integrative framework. Research Policy, 43(7), 1239–1249.

    Article  Google Scholar 

  • Giddens, A. (1984). The constitution of society. Cambridge: Polity Press.

    Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.

    Article  MathSciNet  MATH  Google Scholar 

  • Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management Science, 54(1), 180–193.

    Article  Google Scholar 

  • Isard, W. (1954). Location theory and trade theory: Short-run analysis. The Quarterly Journal of Economics, 68(2), 305–320.

    Article  Google Scholar 

  • Kane, G. J., Alavi, M., Labianca, G. J., & Borgatti, S. P. (2014). What is different about social media networks? A framework and a research agenda. MIS Quarterly, 38(1), 274–304.

    Google Scholar 

  • Klimeck, G., McLennan, M., Brophy, S. B., Adams III, G. B., & Lundstrom, M. S. (2008). Nanohub.Org: Advancing education and research in nanotechnology. Computing in Science & Engineering (IEEE Computer Society), 10(5), 17–23.

    Article  Google Scholar 

  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009). Life in the network: The coming age of computational social science. Science (New York, N.Y.), 323(5915), 721–723.

    Article  Google Scholar 

  • Leenders, R. T. A. J. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 21–47.

    Article  Google Scholar 

  • LeSage, J. P. (2000). Bayesian estimation of limited dependent variable spatial autoregressive models. Geographical Analysis, 32(1), 19–35.

    Article  Google Scholar 

  • LeSage, J. P., & Pace, R. K. (2011). Pitfalls in higher order model extensions of basic spatial regression methodology. In T. S. U.-S. Marco (Ed.) Working paper, San Marco.

  • LeSage, J. P., & Page, R. K. (2009). Introduction into spatial economics. Boca Raton: Taylor Francis/CRC Press.

    Book  Google Scholar 

  • Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.

    Article  Google Scholar 

  • Lin, N., Cook, K., & Burt, R. (2001). Social capital: Theory and practice. The Netherlands: Aldine Transaction.

    Book  Google Scholar 

  • Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using stata (2nd edn.). Stata press: College Station, TX.

    MATH  Google Scholar 

  • Lu, H., & Feng, Y. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511.

    Article  Google Scholar 

  • Madhavan, K., Zentner, M., & Klimeck, G. (2013). Learning and research in the cloud. Nature Nanotechnology, 8(11), 786–789.

    Article  Google Scholar 

  • Marsaglia, G., Tsang, W. W., & Wang, J. (2003). Evaluating Kolmogorov’s distribution. Journal of Statistical Software, 8(18), 1–4.

    Article  Google Scholar 

  • Matei, S., & Bertino, E. (2014). A research agenda for the study of entropic social structural evolution, functional roles, adhocratic leadership styles, and credibility in online organizations and knowledge markets. In S. Matei & E. Bertino (Eds.), Roles, trust, and reputation in social media knowledge markets: theories and methods. Berlin: Springer.

    Google Scholar 

  • Matei, S. A., & Bruno, R. J. (2015). Pareto’s 80/20 law and social differentiation: A social entropy perspective. Public Relations Review, 41(2), 178–186.

    Article  Google Scholar 

  • Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software development: Apache and mozilla. ACM Transactions on Software Engineering and Methodology, 11(3), 309–346.

    Article  Google Scholar 

  • Olson, G. M., Zimmerman, A., & Bos, N. (2008). Scientific collaboration on the Internet. Cambridge: MIT Press.

    Book  Google Scholar 

  • Orlikowski, W. J. (2000). Using technology and constituting structures: A practice lens for studying technology in organizations. Organization Science, 11(4), 404–428.

    Article  Google Scholar 

  • Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422.

    Article  MathSciNet  MATH  Google Scholar 

  • Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic systems. The American Economic Review, 100(3), 641–672.

    Article  Google Scholar 

  • Páez, A., Scott, D. M., & Volz, E. (2008). Weight matrices for social influence analysis: An investigation of measurement errors and their effect on model identification and estimation quality. Social Networks, 30(4), 309–317.

    Article  Google Scholar 

  • Poore, B. S., & Goodchild, M. (2011). Users as essential contributors to spatial cyberinfrastructures. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5510–5515.

    Article  Google Scholar 

  • Rullani, F., & Haefliger, S. (2013). The periphery on stage: the intra-organizational dynamics in online communities of creation. Research Policy, 42(4), 941–953.

    Article  Google Scholar 

  • Sauermann, H., & Franzoni, C. (2015). Crowd science user contribution patterns and their implications. Proceedings of National Academy of Science USA, 112(3), 679–684.

    Article  Google Scholar 

  • Setia, P., Rajagopalan, B., Sambamurthy, V., & Calantone, R. (2012). How peripheral developers contribute to open-source software development. Information Systems Research, 23(1), 144–163.

    Article  Google Scholar 

  • Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research commentary—Digital infrastructures: The missing is research agenda. Information Systems Research, 21(4), 748–759.

    Article  Google Scholar 

  • Wareham, J., Fox, P. B., & Cano Giner, J. L. (2014). Technology ecosystem governance. Organization Science, 25(4), 1195–1215.

    Article  Google Scholar 

  • Wilhelm, S., & de Matos, M. G. (2013). Estimating spatial probit models in R. The R Journal, 5(1), 130–140.

    Google Scholar 

  • Wright, D. J., & Wang, S. (2011). The emergence of spatial cyberinfrastructure. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5488–5491.

    Article  Google Scholar 

  • Yoo, Y., Boland, R. J., Jr., Lyytinen, K., & Majchrzak, A. (2012). Organizing for innovation in the digitized world. Organization Science, 23(5), 1398–1408.

    Article  Google Scholar 

Download references

Acknowledgments

This work was initiated under the auspices of the Exploratory Research in Social Science Grant of the Executive Office of the Vice President for Research (OVPR) at Purdue University (PI Sorin Adam Matei and Gerhard Klimeck) and was supported by the NSF award 1255781. We thank Philip Munyua, Kang-Yu Hsu, Srikant Rao, Steven Clark, and Swaroop Samek at Purdue University for their support in data processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Brunswicker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunswicker, S., Matei, S.A., Zentner, M. et al. Creating impact in the digital space: digital practice dependency in communities of digital scientific innovations. Scientometrics 110, 417–442 (2017). https://doi.org/10.1007/s11192-016-2106-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2106-z

Keywords

Mathematics Subject Classification

JEL Classification

Navigation