Scientometrics

, Volume 109, Issue 2, pp 629–659 | Cite as

Research diversification and impact: the case of national nanoscience development

  • Patrick Herron
  • Aashish Mehta
  • Cong Cao
  • Timothy Lenoir
Article
  • 400 Downloads

Abstract

Newcomer nations, promoted by developmental states, have poured resources into nanotechnology development, and have dramatically increased their nanoscience research influence, as measured by research citation. Some achieved these gains by producing significantly higher impact papers rather than by simply producing more papers. Those nations gaining the most in relative strength did not build specializations in particular subfields, but instead diversified their nanotechnology research portfolios and emulated the global research mix. We show this using a panel dataset covering the nanotechnology research output of 63 countries over 12 years. The inverse relationship between research specialization and impact is robust to several ways of measuring both variables, the introduction of controls for country identity, the volume of nanoscience research output (a proxy for a country’s scientific capability) and home-country bias in citation, and various attempts to reweight and split the samples of countries and journals involved. The results are consistent with scientific advancement by newcomer nations being better accomplished through diversification than specialization.

Keywords

Diversification Specialization Impact Nanotechnology Nanoscience Developmental state 

JEL Classification

O10 O25 O30 

References

  1. Abramo, G., Cicero, T., & D’Angelo, C. A. (2012). Revisiting the scaling of citations for research assessment. Journal of Informetrics, 6(4), 470–479.CrossRefGoogle Scholar
  2. Aksnes, D. W. (2006). Citation rates and perceptions of scientific contribution. Journal of the American Society for Information Science and Technology, 57(2), 169–185. doi:10.1002/asi.20262.CrossRefGoogle Scholar
  3. Aksnes, D. W., Schneider, J. W., & Gunnarsson, M. (2012). Ranking national research systems by citation indicators. A comparative analysis using whole and fractionalised counting methods. Journal of Informetrics, 6(1), 36–43.CrossRefGoogle Scholar
  4. Andersson, M., & Ejermo, O. (2008). Technology specialization and the magnitude and quality of exports. Econ. Innov. New Techn., 17(4), 355–375.CrossRefGoogle Scholar
  5. Appelbaum, R. P., Parker, R., & Cao, C. (2011). Developmental state and innovation: Nanotechnology in China. Global Networks, 11(3), 298–314.CrossRefGoogle Scholar
  6. Archibugi, D., & Pianta, M. (1992). Specialization and size of technological activities in industrial countries: The analysis of patent data. Research Policy, 21(1), 79–93.CrossRefGoogle Scholar
  7. Avila-Robinson, A., & Miyazaki, K. (2012). Emerging micro/nanofabrication technologies as drivers of nanotechnological change: Paths of knowledge evolution and international patterns of specialization. Technology Management for Emerging Technologies (PICMET), 2012 Proceedings of PICMET’12: (pp. 2652–2662): IEEE.Google Scholar
  8. Balassa, B. (1965). Trade liberalisation and “revealed” comparative advantage1. The Manchester School, 33(2), 99–123.CrossRefGoogle Scholar
  9. Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17–35. doi:10.1214/07-Aoas114.MathSciNetCrossRefMATHGoogle Scholar
  10. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4–5), 993–1022. doi:10.1162/Jmlr.2003.3.4-5.993.MATHGoogle Scholar
  11. Braun, T., Zsindely, S., Dióspatonyi, I., & Zádor, E. (2007). Gatekeeping patterns in nano-titled journals. Scientometrics, 70(3), 651–667. doi:10.1007/s11192-007-0306-2.CrossRefGoogle Scholar
  12. Cantwell, J., & Vertova, G. (2004). Historical evolution of technological diversification. Research Policy, 33(3), 511–529.CrossRefGoogle Scholar
  13. Chang, J., Gerrish, S., Wang, C., Boyd-graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. In Advances in neural information processing systems (Vol. 22, pp. 288–296). https://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models.
  14. Chen, H., & Roco, M. C. (2008). Mapping nanotechnology innovations and knowledge: global and longitudinal patent and literature analysis (Vol. 20): Springer Science & Business Media.Google Scholar
  15. Commission of the European Communities. (2007). Nanosciences and Nanotechnologies: An action plan for Europe 2005-2009. First Implementation Report 2005–2007 Brussels.Google Scholar
  16. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(01), 87–114. doi:10.1017/S0140525X01003922.CrossRefGoogle Scholar
  17. Didegah, F., Thelwall, M., & Gazni, A. (2012). An international comparison of journal publishing and citing behaviours. Journal of Informetrics, 6(4), 516–531.CrossRefGoogle Scholar
  18. Editorial (2008). Location, location, location. Nature Nanotechnology, 3(6), 309.CrossRefGoogle Scholar
  19. European Commission. (2006). FP7—Tomorrow’s answers start today. In Community Research and Development Information Service (CORDIS) (Ed.): European Commission. https://ec.europa.eu/research/fp7/pdf/fp7-factsheets_en.pdf.
  20. Feldman, M. P., & Audretsch, D. B. (1999). Innovation in cities: Science-based diversity, specialization and localized competition. European economic review, 43(2), 409–429.CrossRefGoogle Scholar
  21. Fink, D., Kwon, Y., Rho, J. J., & So, M. (2012). S&T knowledge production from 2000 to 2009 in two periphery countries: Brazil and South Korea. Scientometrics, 99, 1–18.Google Scholar
  22. Garfield, E. (1979). Citation indexing: Its theory and application in science, technology, and humanities. New York: Wiley.Google Scholar
  23. Glanzel, W., Meyer, M., du Plessis, B., Magerman, T., Schlemmer, B., Debackere, K., et al. (2003). Nanotechnology: Analysis of an emerging domain of scientific and technological endeavour. Leuven, Belgium: Steunpunt O&O Statistieken.Google Scholar
  24. Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology: A comparative bibliometric study of several nanoscience ‘giants’. Research Policy, 36(6), 880–886.CrossRefGoogle Scholar
  25. Hall, D., Jurafsky, D., & Manning, C. D. Studying the history of ideas using topic models. In Proceedings of the conference on empirical methods in natural language processing, 2008 (pp. 363-371): Association for Computational Linguistics.Google Scholar
  26. Harper, T. (2011). Global Funding of Nanotechnologies and Its Impact, Cientifica. Available at http://cientifica.com/wp-content/uploads/downloads/2011/07/Global-Nanotechnology-Funding-Report-2011.pdf.
  27. Hausmann, R., Hidalgo, C., Bustos, S., Coscia, M., Chung, S., Jimenez, J., et al. (2011). The atlas of economic complexity: mapping paths to prosperity. Cambridge, MA: Center for International Development, Harvard University.Google Scholar
  28. Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106(26), 10570–10575.CrossRefGoogle Scholar
  29. Hidalgo, C. A., Klinger, B., Barabási, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482–487.CrossRefGoogle Scholar
  30. Horlings, E., & Van den Besselaar, P. Convergence in science: Growth and structure of worldwide scientific output, 1993–2008. In Science and Innovation Policy, 2011 Atlanta Conference on, 2011 (pp. 1–19): IEEE.Google Scholar
  31. Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: a review of social science studies and search strategies. The Journal of Technology Transfer, 36(2), 145–172.CrossRefGoogle Scholar
  32. Imbs, J., & Wacziarg, R. (2003). Stages of diversification. American Economic Review, 93, 63–86.CrossRefGoogle Scholar
  33. Jin, B., & Rousseau, R. (2005). Evaluation of research performance and scientometric indicators in China. In H. F. Moed, W. Glanzel & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 497–514): Springer.Google Scholar
  34. Khramova, E., Meissner, D., & Sagieva, G. (2013). Statistical patent analysis indicators as a means of determining country technological specialisation. WP BRP: Higher School of Economics Research Paper No. 9.Google Scholar
  35. King, D. A. (2004). The scientific impact of nations. Nature, 430(6997), 311–316.CrossRefGoogle Scholar
  36. Kostoff, R. N. (1998). The use and misuse of citation analysis in research evaluation—Comments on theories of citation? Scientometrics, 43(1), 27–43.CrossRefGoogle Scholar
  37. Kostoff, R. N. (2012). China/USA nanotechnology research output comparison—2011 update. Technological Forecasting and Social Change, 79(5), 986–990.CrossRefGoogle Scholar
  38. Kostoff, R., Murday, J., Lau, C., & Tolles, W. (2006). The seminal literature of nanotechnology research. Journal of Nanoparticle Research,. doi:10.1007/s11051-005-9034-9.Google Scholar
  39. Lee, W.-L., Chiang, J.-C., Wu, Y.-H., & Liu, C.-H. (2012). How knowledge exploration distance influences the quality of innovation. Total Quality Management & Business Excellence, 23(9–10), 1045–1059.CrossRefGoogle Scholar
  40. Lenoir, T., & Herron, P. (2009). Tracking the current rise of chinese pharmaceutical bionanotechnology. Journal of Biomedical Discovery and Collaboration, 4, 8.Google Scholar
  41. Leydesdorff, L. (1998). Theories of citation? Scientometrics, 43(1), 5–25.CrossRefGoogle Scholar
  42. Leydesdorff, L. (2013). An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis. Scientometrics, 94(1), 35–55.CrossRefGoogle Scholar
  43. Leydesdorff, L., & Wagner, C. (2009). Is the United States losing ground in science? A global perspective on the world science system. Scientometrics, 78(1), 23–36.CrossRefGoogle Scholar
  44. Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713. doi:10.1007/s11192-007-0308-0.CrossRefGoogle Scholar
  45. Lundberg, J. (2007). Lifting the crown—citation z-score. Journal of Informetrics, 1(2), 145–154.CrossRefGoogle Scholar
  46. MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444.CrossRefGoogle Scholar
  47. Mangàni, A. (2007). Technological variety and the size of economies. Technovation, 27(11), 650–660.CrossRefGoogle Scholar
  48. Matusik, S. F., & Fitza, M. A. (2012). Diversification in the venture capital industry: Leveraging knowledge under uncertainty. Strategic Management Journal, 33(4), 407–426. doi:10.1002/smj.1942.CrossRefGoogle Scholar
  49. Mehta, A., Herron, P., Motoyama, Y., Appelbaum, R., & Lenoir, T. (2012). Globalization and de-globalization in nanotechnology research: The role of China. Scientometrics, 93(2), 439–458.CrossRefGoogle Scholar
  50. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.CrossRefGoogle Scholar
  51. Mimno, D., & McCallum, A. (2007). Organizing the OCA: Learning faceted subjects from a library of digital books. Proceedings of the 7th Acm/Iee Joint Conference on Digital Libraries, (pp. 376–385). doi:10.1145/1255175.1255249.
  52. Moed, H. F., De Bruin, R. E., & Van Leeuwen, T. N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381–422.CrossRefGoogle Scholar
  53. Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy,. doi:10.1016/J.Respol.02.005.Google Scholar
  54. Newman, D., Chemudugunta, C., Smyth, P., & Steyvers, M. (2006). Analyzing entities and topics in news articles using statistical topic models. Intelligence and Security Informatics, Proceedings, 3975, 93–104.CrossRefGoogle Scholar
  55. Noyons, E., Buter, R., van Raan, A., Schmoch, U., Heinze, T., Hinze, S., et al. (2003). Mapping excellence in science and technology across Europe (Part 2: Nanoscience and nanotechnology) (Draft report of project EC-PPN CT-2002-0001 to the European Commission).Google Scholar
  56. OECD. (2013). Research and development statistics: Gross domestic expenditure on R-D by sector of performance and source of funds. OECD science, technology and R&D statistics (database). doi:10.1787/data-00189-en. Accessed 26 Oct 2013.
  57. OECD. (2014). Main science and technology indicators, Issue 1. Paris: OECD Press.Google Scholar
  58. OECD Working Party on Nanotechnology. (2012). Finance and Investor Models in Nanotechnology.  (Background Paper 2: OECD /NNI International Symposium on Assessing the Economic Impact of Nanotechnology. Paris, France).Google Scholar
  59. Onel, S., Zeid, A., & Kamarthi, S. (2011). The structure and analysis of nanotechnology co-author and citation networks. Scientometrics, 89(1), 119–138. doi:10.1007/s11192-011-0434-6.CrossRefGoogle Scholar
  60. Palmberg, C., Dernis, H., & Miguet, C. (2009). Nanotechnology: An overview based on indicators and statistics. STI Working Paper Series. 2 rue André-Pascal, 75775 Paris Cedex 16, France: OECD, Directorate for Science, Technology and Industry.Google Scholar
  61. PCAST. (2012). Report to the President and Congress on the fourth assessment of the National Nanotechnology Initiative. President's Council of Advisors on Science and Technology. http://whitehouse.gov/sites/default/files/microsites/ostp/PCAST_2012_Nanotechnology_FINAL.pdf.
  62. Pianta, M., & Archibugi, D. (1991). Specialization and size of scientific activities: A bibliometric analysis of advanced countries. Scientometrics, 22(3), 341–358.CrossRefGoogle Scholar
  63. Porter, A., Youtie, J., & Shapira, P. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.CrossRefGoogle Scholar
  64. Porter, A. L., & Zhang, Y. (2012). Text Clumping for Technical Intelligence.Google Scholar
  65. Pouris, A. (2007). Nanoscale research in South Africa: A mapping exercise based on scientometrics. Scientometrics, 70(3), 541–553. doi:10.1007/s11192-007-0301-7.CrossRefGoogle Scholar
  66. Raje, J. (2011). Commercialization of nanotechnology: Global overview and European position. Budapest: Lux Research.Google Scholar
  67. Řehůřek, R., & Sojka, P. Software framework for topic modelling with large corpora. In Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks, 2010 (pp. 46–50).Google Scholar
  68. Roco, M. C. (2007). National nanotechnology initiative: past, present, future. In W. A. Goddard, D. Brenner, S. E. Lyshevski & G. J. Iafrate (Eds.), Handbook on nanoscience, engineering and technology (2nd ed., pp. 3.1–3.26). Boca Raton: Taylor and Francis.Google Scholar
  69. Roco, M. C., Mirken, C. A., & Hersam, M. C. (Eds.). (2010). Nanotechnology research directions for societal needs in 2020: Retrospective and outlook. Berlin: Springer.Google Scholar
  70. Royal Society of London. (2011). Knowledge, networks and nations: global scientific collaboration in the 21st century. London: Elsevier.MATHGoogle Scholar
  71. Schubert, A., & Braun, T. (1986). Relative indicators and relational charts for comparative assessment of publication output and citation impact. Scientometrics, 9(5–6), 281–291.CrossRefGoogle Scholar
  72. Schubert, T., & Grupp, H. (2011). Tests and confidence intervals for a class of scientometric, technological and economic specialization ratios. Applied Economics, 43(8), 941–950.CrossRefGoogle Scholar
  73. Shaikh, A. (2007). Globalization and the Myths of Free Trade: History, Theory and Empirical Evidence: Taylor & Francis.Google Scholar
  74. Shapira, P., & Wang, J. (2010). Follow the money. Nature, 468(7324), 627–628.CrossRefGoogle Scholar
  75. UNCTAD (2006). UNCTAD Handbook of Statistics. In U.N.C.O.T.A. Development (Ed.). Geneva: United Nations Conference on Trade and Development.Google Scholar
  76. Van Noorden, R. (2014). China tops Europe in R&D intensity. Nature, 505, 144–145.CrossRefGoogle Scholar
  77. van Zeebroeck, N., van Pottelsberghe de la Potterie, B., & Han, W. (2006). Issues in measuring the degree of technological specialisation with patent data. Scientometrics, 66(3), 481–492.CrossRefGoogle Scholar
  78. Wagner, C. S. (2008). The new invisible college: Science for development. Washington, D.C.: Brookings Institution Press.Google Scholar
  79. Waltman, L., & van Eck, N. J. (2013). Source normalized indicators of citation impact: An overview of different approaches and an empirical comparison. Scientometrics, 96(3), 699–716.CrossRefGoogle Scholar
  80. Woo-Cumings, M. (1999). The developmental state: Cornell University Press.Google Scholar
  81. Youtie, J., Shapira, P., & Porter, A. L. (2008). Nanotechnology publications and citations by leading countries and blocs. [Editorial Material]. Journal of Nanoparticle Research, 10(6), 981–986. doi:10.1007/s11051-008-9360-9.CrossRefGoogle Scholar
  82. Zakaria, F. (2008). The post-american world. New York: W.W. Norton & Co.Google Scholar
  83. Zhang, H., Giles, C. L., Foley, H. C., & Yen, J. (2007). Probabilistic community discovery using hierarchical latent gaussian mixture model. AAAI, 7, 663–668.Google Scholar
  84. Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Inform Process Manag, 42(6), 1513–1531. doi:10.1016/j.ipm.2006.03.016.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Patrick Herron
    • 1
  • Aashish Mehta
    • 2
  • Cong Cao
    • 3
  • Timothy Lenoir
    • 4
  1. 1.Information Science + StudiesDuke UniversityDurhamUSA
  2. 2.Global Studies/Center for Nanotechnology in SocietyUniversity of California-Santa BarbaraSanta BarbaraUSA
  3. 3.School of Contemporary Chinese StudiesUniversity of Nottingham NingboNingboChina
  4. 4.Science & Technology StudiesUniversity of California-DavisDavisUSA

Personalised recommendations