Skip to main content
Log in

Ecodesign field of research throughout the world: mapping the territory by using an evolutionary lens

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The development of environmentally friendly products is one of the key contemporary trends in the environmental management and planning field of knowledge. Ecodesign is considered a practical mechanism for integrating environmental considerations throughout the life cycle of the product. Within this scope, the aim of this paper is to systematize the publications on ecodesign and to propose the historical evolutionary phases of this area, considering important characteristics such as geographical distribution. To this end, a bibliometric analysis was performed by identifying key papers, authors, and journals that deal with the theme and the history of the number of papers published. Among the results, a recent growth in publications was found, with a wide range of authors conducting research and publishing papers on the subject. The majority of research is conducted in European countries, especially France and Nordic region. Most journals that publish papers on ecodesign are from the environmental field as opposed to those that deal with new product development and innovation and project management. This work also identifies historical research phases; among the most recent, it is possible to notice efforts to link ecodesign with other areas of management, such as the fuzzy method, lean product development, and project management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Albino, V., Balice, A., & Dangelico, R. M. (2009). Environmental strategies and green product development: An overview on sustainability-driven companies. Business Strategy and the Environment, 18(2), 83–96. doi:10.1002/bse.638.

    Article  Google Scholar 

  • Alblas, A. A., Peters, K., & Wortmann, J. C. H. (2014). Fuzzy sustainability incentives in new product development: An empirical exploration of sustainability challenges in manufacturing companies. International Journal of Operations & Production Management, 34(4), 513–545. doi:10.1108/IJOPM-10-2012-0461.

    Article  Google Scholar 

  • Ammenberg, J., & Sundin, E. (2005). Products in environmental management systems: Drivers, barriers and experiences. Journal of Cleaner Production, 1(4), 405–415. doi:10.1016/j.jclepro.2003.12.005.

    Article  Google Scholar 

  • Angel, D. P., & Rock, M. T. (2005). Global standards and the environmental performance of industry. Environment and Planning A., 37(11), 1903–1918. doi:10.1068/a3788.

    Article  Google Scholar 

  • Armstrong, C. M., Niinimäki, K., Kujala, S., Karell, E., & Lang, C. (2014). Sustainable product-service systems for clothing: Exploring consumer perceptions of consumption alternatives in Finland. Journal of Cleaner Production, 97(15), 30–39. doi:10.1016/j.jclepro.2014.01.046.

    Google Scholar 

  • Barr, S., Shaw, G., & Coles, T. (2011). Sustainable lifestyles: Sites, practices, and policy. Environment and Planning A, 43(12), 3011–3029. doi:10.1068/a43529.

    Article  Google Scholar 

  • Baumann, H., Boons, F., & Bragd, A. (2002). Mapping the green product development field: Engineering, policy and business perspectives. Journal of Cleaner Production, 10(5), 409–425. doi:10.1016/S0959-6526(02)00015-X.

    Article  Google Scholar 

  • Beng, L. G., & Omar, B. (2014). Integrating axiomatic design principles into sustainable product development. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 107–117. doi:10.1007/s40684-014-0015-2.

    Article  Google Scholar 

  • Bergman, L. E. M. (2012). Finding citations to social work literature: The relative benefits of using Web of Science, Scopus, or Google Scholar. Journal of Academic Librarianship, 38(6), 370–379.

    Article  MathSciNet  Google Scholar 

  • Boks, C. (2006). The soft side of ecodesign. Journal of Cleaner Production, 14(15–16), 1346–1356. doi:10.1016/j.jclepro.2005.11.015.

    Article  Google Scholar 

  • Boks, C., & McAloone, T. C. (2009). Transitions in sustainable product design research. International Journal of Product Development, 9(4), 429–449. doi:10.1504/IJPD.2009.027475.

    Article  Google Scholar 

  • Bovea, M. D., & Pérez-Belis, V. (2012). A taxonomy of ecodesign tools for integrating environmental requirements into the product design process. Journal of Cleaner Production, 20(1), 61–71. doi:10.1016/j.jclepro.2011.07.012.

    Article  Google Scholar 

  • Brezet, H. (1997). Dynamics in ecodesign practice. Industry and Environment, 20(1–2), 21–24.

    Google Scholar 

  • Brones, F., & Carvalho, M. M. (2015). From 50 to 1: Integrating literature toward a systemic ecodesign model. Journal of Cleaner Production, 96(1), 44–57. doi:10.1016/j.jclepro.2014.07.036.

    Article  Google Scholar 

  • Brones, F., Carvalho, M. M., & Zancul, E. S. (2014). Ecodesign in project management: A missing link for the integration of sustainability in product development? Journal of Cleaner Production, 80(October), 106–118. doi:10.1016/j.jclepro.2014.05.088.

    Article  Google Scholar 

  • Brook, J. W., & Pagnanelli, F. (2014). Integrating sustainability into innovation project portfolio management—A strategic perspective. Journal of Engineering and Technology Management, 34, 46–62. doi:10.1016/j.jengtecman.2013.11.004.

    Article  Google Scholar 

  • Byggeth, S., & Hochschorner, E. (2006). Handling trade-offs in ecodesign tools for sustainable product development and procurement. Journal of Cleaner Production, 14(15–16), 1420–1430. doi:10.1016/j.jclepro.2005.03.024.

    Article  Google Scholar 

  • Calcott, P., & Walls, M. (2000). Can downstream waste disposal policies encourage upstream “design for environment “? American Economic Review, 90(2), 233–237. doi:10.1257/aer.90.2.233.

    Article  Google Scholar 

  • Calcott, P., & Walls, M. (2005). Waste, recycling, and design for environment: Roles for markets and policy instruments. Resource and Energy Economics, 27(December), 287–305. doi:10.1016/j.reseneeco.2005.02.001.

    Article  Google Scholar 

  • Chan, H. K., Wang, X., White, G. R. T., & Yip, N. (2013). An extended fuzzy-AHP approach for the evaluation of green product designs. IEEE Transactions on Engineering Management, 60(2), 327–339. doi:10.1109/TEM.2012.2196704.

    Article  Google Scholar 

  • Chang, C. H. (2011). The influence of corporate environmental ethics on competitive advantage: The mediation role of green innovation. Journal of Business Ethics, 104(3), 361–370. doi:10.1007/s10551-011-0914-x.

    Article  Google Scholar 

  • Chen, C. (2001). Design for the environment: A quality-based model for green product development. Management Science, 47(2), 250–263. doi:10.1287/mnsc.47.2.250.9841.

    Article  Google Scholar 

  • Chen, Y. S. (2008). The driver of green innovation and green image–green core competence. Journal of Business Ethics, 81(3), 531–543.

    Article  Google Scholar 

  • Chen, Y. (2012). The driver and green competence innovation of green green core image. Journal of Business Ethics, 81(3), 531–543. doi:10.1007/s10551-007-9522-1.

    Article  Google Scholar 

  • Chen, Y. S., Lai, S. B., & Wen, C. T. (2006). The influence of green innovation performance on corporate advantage in Taiwan. Journal of Business Ethics, 67(4), 331–339. doi:10.1007/s10551-006-9025-5.

    Article  Google Scholar 

  • Chen, A. Y., Lai, S., Wen, C., Journal, S., Sep, N., & Chen, Y. (2012). The influence of green innovation performance on corporate advantage in Taiwan the influence of green on corporate innovation advantage wen performance in Taiwan. Journal of Business, 67(4), 331–339. doi:10.1007/s10551-006-9025-5.

    Google Scholar 

  • Chiou, T. Y., Chan, H. K., Lettice, F., & Chung, S. H. (2011). The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan. Transportation Research Part E: Logistics and Transportation Review, 47(6), 822–836. doi:10.1016/j.tre.2011.05.016.

    Article  Google Scholar 

  • Collado-Ruiz, D., & Ostad-Ahmad-Ghorabi, H. (2012). Estimating environmental behavior without performing a life cycle assessment. Journal of Industrial Ecology, 17(1), 31–42. doi:10.1111/j.1530-9290.2012.00510.x.

    Article  Google Scholar 

  • Cuerva, M. C., Triguero-Cano, Á., & Córcoles, D. (2014). Drivers of green and non-green innovation: Empirical evidence in low-tech SMEs. Journal of Cleaner Production, 68(1), 104–113. doi:10.1016/j.jclepro.2013.10.049.

    Article  Google Scholar 

  • Dangelico, R. M. (2015). Green product innovation: Where we are and where we are going. Business Strategy and the Environment. doi:10.1002/bse.1886.

    Google Scholar 

  • Dangelico, R. M., Pontrandolfo, P., & Pujari, D. (2013). Developing sustainable new products in the textile and upholstered furniture industries: Role of external integrative capabilities. Journal of Product Innovation Management, 30(4), 642–658. doi:10.1111/jpim.12013.

    Article  Google Scholar 

  • Dangelico, R. M., & Pujari, D. (2010). Mainstreaming green product innovation: Why and how companies integrate environmental sustainability. Journal of Business Ethics, 95(3), 471–486. doi:10.1007/s10551-010-0434-0.

    Article  Google Scholar 

  • Diwekar, U., & Shastri, Y. (2011). Design for environment: A state-of-the-art review. Clean Technologies and Environmental Policy, 13(2), 227–240. doi:10.1007/s10098-010-0320-6.

    Article  Google Scholar 

  • Donnelly, K., Beckett-Furnell, Z., Traeger, S., Okrasinski, T., & Holman, S. (2006). Eco-design implemented through a product-based environmental management system. Journal of Cleaner Production, 14(15–16), 1357–1367. doi:10.1016/j.jclepro.2005.11.029.

    Article  Google Scholar 

  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. doi:10.1007/s11192-015-1645-z.

    Article  Google Scholar 

  • Eppinger, S. (2011). The fundamental challenge of product design. Journal of Product Innovation Management, 28(3), 399–400. doi:10.1111/j.1540-5885.2011.00810.x.

    Article  Google Scholar 

  • Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. doi:10.1016/j.ijpe.2015.01.003.

    Article  MATH  Google Scholar 

  • Ferenhof, H. A., Vignochi, L., Selig, P. M., Lezana, Á. G. R., & Campos, L. M. S. (2014). Environmental management systems in small and medium-sized enterprises: An analysis and systematic review. Journal of Cleaner Production, 74(1), 44–53. doi:10.1016/j.jclepro.2014.03.027.

    Article  Google Scholar 

  • Fiksel, J. (1996). Design for environment: A guide to sustainable product development. New York: McGraw Hill.

    Google Scholar 

  • Goodall, P., Rosamond, E., & Harding, J. (2014). A review of the state of the art in tools and techniques used to evaluate remanufacturing feasibility. Journal of Cleaner Production, 81(15), 1–15. doi:10.1016/j.jclepro.2014.06.014.

    Article  Google Scholar 

  • González-Benito, J., & González-Benito, O. (2005). Environmental proactivity and business performance: An empirical analysis. Omega, 33(1), 1–15. doi:10.1016/j.omega.2004.03.002.

    Article  Google Scholar 

  • Gottberg, A., Morris, J., Pollard, S., Mark-Herbert, C., & Cook, M. (2006). Producer responsibility, waste minimisation and the WEEE Directive: Case studies in eco-design from the European lighting sector. Science of the Total Environment, 359(1–3), 38–56. doi:10.1016/j.scitotenv.2005.07.001.

    Article  Google Scholar 

  • Handfield, R. B., Calantone, R. J., & Melnyk, S. A. (2001). Integrating environmental concerns into the design process: The gap between theory and practice. IEEE Transactions on Engineering Management, 48(2), 189–208. doi:10.1109/17.922478.

    Article  Google Scholar 

  • Hauschild, M. Z., Jeswiet, J., & Alting, L. (2004). Design for environment–Do we get the focus right? CIRP Annals—Manufacturing Technology, 53(1), 1–4. doi:10.1016/S0007-8506(07)60631-3.

    Article  Google Scholar 

  • Hellström, T. (2007). Dimensions of environmentally sustainable innovation: The structure of eco-innovation concepts. Sustainable Development, 15(3), 148–159. doi:10.1002/sd.309.

    Article  Google Scholar 

  • Hendrickson, C., Horvath, A., Joshi, S., & Lave, L. (1998). Economic input-output models for environmental life-cycle assessment. Environmental Science and Technology, 32(7), 184–191. doi:10.1021/es983471i.

    Article  Google Scholar 

  • Hertwich, E. G., Pease, W. S., & Koshland, C. P. (1997). Evaluating the environmental impact of products and production processes: A comparison of six methods. Science of the Total Environment, 196(1), 13–29. doi:10.1016/S0048-9697(96)05344-2.

    Article  Google Scholar 

  • Herva, M., Franco-Uría, A., Carrasco, E. F., & Roca, E. (2012). Application of fuzzy logic for the integration of environmental criteria in ecodesign. Expert Systems with Applications, 39(4), 4427–4431. doi:10.1016/j.eswa.2011.09.148.

    Article  Google Scholar 

  • Hur, T., Lee, J., Ryu, J., & Kwon, E. (2005). Simplified LCA and matrix methods in identifying the environmental aspects of a product system. Journal of Environmental Management, 75(3), 229–237. doi:10.1016/j.jenvman.2004.11.014.

    Article  Google Scholar 

  • Iwami, S., Mori, J., Sakata, I., & Kajikawa, Y. (2014). Detection method of emerging leading papers using time transition. Scientometrics, 101(2), 1515–1533. doi:10.1007/s11192-014-1380-x.

    Article  Google Scholar 

  • Jabbour, C. J. C., Jugend, D., Jabbour, A. B. L. S., Gunasekaran, A., & Latan, H. (2015). Green product development and performance of Brazilian firms: Measuring the role of human and technical aspects. Journal of Cleaner Production, 87(15), 442–451. doi:10.1016/j.jclepro.2014.09.036.

    Article  Google Scholar 

  • Johansson, G., & Sundin, E. (2014). Lean and green product development: Two sides of the same coin? Journal of Cleaner Production, 85(December), 104–121. doi:10.1016/j.jclepro.2014.04.005.

    Article  Google Scholar 

  • Joshi, S. (1999). Product environmental life-cycle assessment using input-output techniques. Journal of Industrial Ecology, 3(2), 95–120. doi:10.1162/108819899569449.

    Article  Google Scholar 

  • Kaebernick, H., Kara, S., & Sun, M. (2003). Sustainable product development and manufacturing by considering environmental requirements. Robotics and Computer-Integrated Manufacturing, 19(6), 461–468. doi:10.1016/S0736-5845(03)00056-5.

    Article  Google Scholar 

  • Kai, H., Wang, X., & Raffoni, A. (2014). An integrated approach for green design: Life-cycle, fuzzy AHP and environmental management accounting. The British Accounting Review, 46(4), 344–360. doi:10.1016/j.bar.2014.10.004.

    Article  Google Scholar 

  • Karlsson, R., & Luttropp, C. (2006). EcoDesign: What’s happening? An overview of the subject area of EcoDesign and of the papers in this special issue. Journal of Cleaner Production, 14(15–16), 1291–1298. doi:10.1016/j.jclepro.2005.11.010.

    Article  Google Scholar 

  • Kim, S. J., Kara, S., & Kayis, B. (2014). Economic and environmental assessment of product life cycle design: Volume and technology perspective. Journal of Cleaner Production, 75, 75–85. doi:10.1016/j.jclepro.2014.03.094.

    Article  Google Scholar 

  • Klöpffer, W. (2003). Life-cycle based methods for sustainable product development. The International Journal of Life Cycle Assessment, 8(3), 157–159. doi:10.1007/BF02978462.

    Article  Google Scholar 

  • Knight, P., & Jenkins, J. O. (2009). Adopting and applying eco-design techniques: A practitioners perspective. Journal of Cleaner Production, 17(5), 549–558. doi:10.1016/j.jclepro.2008.10.002.

    Article  Google Scholar 

  • Kobayashi, H. (2006). A systematic approach to eco-inoovative product design based on life cycle planning. Advanced Engineering Informatics, 20(2), 113–125. doi:10.1016/j.aei.2005.11.002.

    Article  Google Scholar 

  • Le Pochat, S., Bertoluci, G., & Froelich, D. (2007). Integrating ecodesign by conducting changes in SMEs. Journal of Cleaner Production, 15(7), 671–680. doi:10.1016/j.jclepro.2006.01.004.

    Article  Google Scholar 

  • Lewandowska, A., & Matuszak-Flejszman, A. (2014). Eco-design as a normative element of environmental management systems-the context of the revised ISO 14001:2015. The International Journal of Life Cycle Assessment, 19(11), 1794–1798. doi:10.1007/s11367-014-0787-1.

    Article  Google Scholar 

  • Lindahl, M. (2006). Engineering designers’ experience of design for environment methods and tools—Requirement definitions from an interview study. Journal of Cleaner Production, 14(5), 487–496. doi:10.1016/j.jclepro.2005.02.003.

    Article  Google Scholar 

  • Ljungberg, L. Y. (2007). Materials selection and design for development of sustainable products. Materials and Design, 28(2), 466–479. doi:10.1016/j.matdes.2005.09.006.

    Article  Google Scholar 

  • Lofthouse, V. (2006). Ecodesign tools for designers: Defining the requirements. Journal of Cleaner Production, 14(15–16), 1386–1395. doi:10.1016/j.jclepro.2005.11.013.

    Article  Google Scholar 

  • Lu, B., Zhang, J., Xue, D., & Gu, P. (2011). Systematic lifecycle design for sustainable product development. Concurrent Engineering: Research and Applications, 19(4), 307–324. doi:10.1177/1063293X11424513.

    Article  Google Scholar 

  • Luchs, M. G., Brower, J., & Chitturi, R. (2012). Product choice and the importance of aesthetic design given the emotion-laden trade-off between sustainability and functional performance. Journal of Product Innovation Management, 29(6), 903–916. doi:10.1111/j.1540-5885.2012.00970.x.

    Article  Google Scholar 

  • Luttropp, C., & Lagerstedt, J. (2006). EcoDesign and The ten golden rules: Generic advice for merging environmental aspects into product development. Journal of Cleaner Production, 14(15–16), 1396–1408. doi:10.1016/j.jclepro.2005.11.022.

    Article  Google Scholar 

  • Manzini, E., & Vezzoli, C. (2003). A strategic design approach to develop sustainable product service systems: Examples taken from the “environmentally friendly innovation” Italian prize. Journal of Cleaner Production, 11(8 SPEC), 851–857. doi:10.1016/S0959-6526(02)00153-1.

    Article  Google Scholar 

  • Marcelino-Sábada, S., González-Jaen, L. F., & Pérez-Ezcurdia, A. (2015). Using project management as a way to sustainability. From a comprehensive review to a framework definition. Journal of Cleaner Production, 99(15), 1–16. doi:10.1016/j.jclepro.2015.03.020.

    Article  Google Scholar 

  • Maxwell, D., & Van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8 SPEC), 883–895. doi:10.1016/S0959-6526(02)00164-6.

    Article  Google Scholar 

  • Murugesan, S. (2008). Harnessing green IT: Principles and practices. IT Professional, 10(1), 24–33. doi:10.1109/MITP.2008.10.

    Article  Google Scholar 

  • Nakamura, H., Suzuki, S., Hironori, T., Kajikawa, Y., & Sakata, I. (2011). Citation lag analysis in supply chain research. Scientometrics, 87(2), 221–232. doi:10.1007/s11192-011-0341-x.

    Article  Google Scholar 

  • Nielsen, P., & Wenzel, H. (2002). Integration of environmental aspects in product development: A stepwise procedure based on quantitative life cycle assessment. Journal of Cleaner Production, 10(3), 247–257. doi:10.1016/S0959-6526(01)00038-5.

    Article  Google Scholar 

  • Pigosso, D. C. A., Rozenfeld, H., & McAloone, T. C. (2013). Ecodesign maturity model: A management framework to support ecodesign implementation into manufacturing companies. Journal of Cleaner Production, 59(15), 160–173. doi:10.1016/j.jclepro.2013.06.040.

    Article  Google Scholar 

  • Pigosso, D. C. A., Zanette, E. T., Filho, A. G., Ometto, A. R., & Rozenfeld, H. (2010). Ecodesign methods focused on remanufacturing. Journal of Cleaner Production, 18(1), 21–31. doi:10.1016/j.jclepro.2009.09.005.

    Article  Google Scholar 

  • Porter, M. E., & Van der Linde, C. (1995). Toward a new conception of the environment–competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118. doi:10.1257/jep.9.4.97.

    Article  Google Scholar 

  • Poulikidou, S., Björklund, A., & Tyskeng, S. (2014). Empirical study on integration of environmental aspects into product development: Processes, requirements and the use of tools in vehicle manufacturing companies in Sweden. Journal of Cleaner Production, 8(1), 34–45. doi:10.1016/j.jclepro.2014.06.001.

    Article  Google Scholar 

  • Pujari, D. (2006). Eco-innovation and new product development: Understanding the influences on market performance. Technovation, 26(1), 76–85. doi:10.1016/j.technovation.2004.07.006.

    Article  MathSciNet  Google Scholar 

  • Pujari, D., Peattie, K., & Wright, G. (2004). Organizational antecedents of environmental responsiveness in industrial new product development. Industrial Marketing Management, 33(5), 381–391. doi:10.1016/j.indmarman.2003.09.001.

    Article  Google Scholar 

  • Puglieria, F. N., Ometto, A., & Miguel, P. A. C. (2011). Eco-design methods for developing new products based on QFD: A literature analysis. Product: Management and Development, 9(1), 23–29. doi:10.4322/pmd.2011.003.

    Article  Google Scholar 

  • Restall, B., & Conrad, E. (2015). A literature review of connectedness to nature and its potential for environmental management. Journal of Environmental Management, 159, 264–278. doi:10.1016/j.jenvman.2015.05.022.

    Article  Google Scholar 

  • Sánchez, M. A. (2015). Integrating sustainability issues into project management. Journal of Cleaner Production, 96(1), 319–330. doi:10.1016/j.jclepro.2013.12.087.

    Article  Google Scholar 

  • Sanyé-Mengual, E., Pérez-López, P., González-García, S., Lozano, R. G., Feijoo, G., Moreira, M. T., et al. (2014). Eco-designing the use phase of products in sustainable manufacturing. Journal of Industrial Ecology, 18(4), 545–557. doi:10.1111/jiec.12161.

    Article  Google Scholar 

  • Sarkis, J., Gonzalez-Torre, P., & Adenso-Diaz, B. (2010). Stakeholder pressure and the adoption of environmental practices: The mediating effect of training. Journal of Operations Management, 28(2), 163–176. doi:10.1016/j.jom.2009.10.001.

    Article  Google Scholar 

  • Silvius, A. J. G., & Schipper, R. (2014). Sustainability in project management: A literature review and impact analysis. Social Business, 4(1), 63–96. doi:10.1362/204440814X13948909253866.

    Article  Google Scholar 

  • Sroufe, R., Curkovic, S., Montabon, F., & Melnyk, S. A. (2000). The new product design process and design for environment: “Crossing the chasm”. International Journal of Operations & Production Management, 20(2), 267–291. doi:10.1108/01443570010304297.

    Article  Google Scholar 

  • Stalmans, P. Van, Aken, E. H., Feron, E. J., & Stalmans, I. (2002). Toxic effect of indocyanine green on retinal pigment epithelium related to osmotic effects of the solvent. American Journal of Ophthalmology, 134(2), 282–285.

    Article  Google Scholar 

  • Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23–38. doi:10.1007/s11192-007-1897-3.

    Article  Google Scholar 

  • Van Hemel, C., & Cramer, J. (2002). Barriers and stimuli for ecodesign in SMEs. Journal of Cleaner Production, 10(5), 439–453. doi:10.1016/S0959-6526(02)00013-6.

    Article  Google Scholar 

  • Vezzoli, C., Ceschin, F., & Diehl, J. C. (2015). Sustainable product-service system design applied to distributed renewable energy fostering the goal of sustainable energy for all. Journal of Cleaner Production, 97(15), 134–136. doi:10.1016/j.jclepro.2015.02.069.

    Article  Google Scholar 

  • Vinodh, S., & Rathod, G. (2012). Application of fuzzy logic-based environmental conscious QFD to rotary switch: A case study. Clean Technologies and Environmental Policy, 14(2), 319–332. doi:10.1007/s10098-011-0404-y.

    Article  Google Scholar 

  • Wang, X., Chan, H. K., & Li, D. (2015). A case study of an integrated fuzzy methodology for green product development. European Journal of Operational Research, 241(1), 212–223. doi:10.1016/j.ejor.2014.08.007.

    Article  MathSciNet  Google Scholar 

  • Yu, C., Davis, C., & Dijkema, G. P. J. (2013). Understanding the evolution of industrial symbiosis research: A bibliometric and network analysis (1997–2012). Journal of Industrial Ecology, 18(2), 280–293. doi:10.1111/jiec.12073.

    Article  Google Scholar 

  • Zhu, J. Y., & Deshmukh, A. (2003). Application of Bayesian decision networks to life cycle engineering in green design and manufacturing. Engineering Applications of Artificial Intelligence, 16(2), 91–103. doi:10.1016/S0952-1976(03)00057-5.

    Article  Google Scholar 

  • Zhu, Q., & Sarkis, J. (2007). The moderating effects of institutional pressures on emergent green supply chain practices and performance. International Journal of Production Research, 45(18–19), 4333–4335. doi:10.1080/00207540701440345.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the FAPESP (São Paulo Research Foundation) for financially supporting this study (Project no. 15/00110-6), and to the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jugend.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luiz, J.V.R., Jugend, D., Jabbour, C.J.C. et al. Ecodesign field of research throughout the world: mapping the territory by using an evolutionary lens. Scientometrics 109, 241–259 (2016). https://doi.org/10.1007/s11192-016-2043-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2043-x

Keywords

Navigation