Advertisement

Scientometrics

, Volume 108, Issue 1, pp 113–141 | Cite as

Is there a gender difference in scientific collaboration? A scientometric examination of co-authorships among industrial–organizational psychologists

  • Clemens B. FellEmail author
  • Cornelius J. König
Article

Abstract

In modern knowledge societies, scientific research is crucial, but expensive and often publicly financed. However, with regard to scientific research success, some studies have found gender differences in favor of men. To explain this, it has been argued that female researchers collaborate less than male researchers, and the current study examines this argument scientometrically. A secondary data analysis was applied to the sample of a recent scientometric publication (König et al. in Scientometrics 105:1931–1952, 2015. doi: 10.1007/s11192-015-1646-y). The sample comprised 4234 (45 % female) industrial–organizational psychologists with their 46,656 publications (published from 1948 to 2013) and all of their approx. 100,000 algorithmically genderized collaborators (i.e., co-authors). Findings confirmed that (a) the majority of researchers’ publications resulted from collaborations, and (b) their engagement in collaborations was related to their scientific success, although not as clearly as expected (and partly even negatively). However, there was no evidence that a lack of female collaboration causes females’ lower scientific success. In fact, female researchers engage in more scientific collaborations. Our findings have important implications for science and society because they make gender differences in scientific success much harder to rationalize.

Keywords

Gender differences Collaboration Research productivity Scientific productivity Impact Networking 

Mathematics Subject Classification

62-07 

JEL Classification

I24 

Notes

Acknowledgments

We thank the supportive R community, Kamil Wais for helping us to use genderizeR, and Casper Strømgren for a sufficiently powerful genderize.io subscription.

References

  1. Abbar, S., Mejova, Y., & Weber, I. (2015). You tweet what you eat: Studying food consumption through Twitter. In B. Begole, J. Kim, K. Inkpen, & W. Woo (Eds.), Proceedings of the 33rd annual ACM conference on human factors in computing systems (CHI) (pp. 3197–3206). New York, NY: ACM. doi: 10.1145/2702123.2702153.Google Scholar
  2. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6, 403–412. doi: 10.1016/j.joi.2012.01.002.CrossRefGoogle Scholar
  3. Abramo, G., D’Angelo, C. A., & Caprasecca, A. (2009). Gender differences in research productivity: A bibliometric analysis of the Italian academic system. Scientometrics, 79, 517–539. doi: 10.1007/s11192-007-2046-8.CrossRefGoogle Scholar
  4. Abramo, G., D’Angelo, C. A., & Murgia, G. (2013). Gender differences in research collaboration. Journal of Informetrics, 7, 811–822. doi: 10.1016/j.joi.2013.07.002.CrossRefGoogle Scholar
  5. Acedo, F. J., Barroso, C., Casanueva, C., & Galán, J. L. (2006). Co-authorship in management and organizational studies: An empirical and network analysis. Journal of Management Studies, 43, 957–983. doi: 10.1111/j.1467-6486.2006.00625.x.CrossRefGoogle Scholar
  6. Aguinis, H., Bradley, K. J., & Brodersen, A. (2014). Industrial–organizational psychologists in business schools: Brain drain or eye opener? Industrial and Organizational Psychology, 7, 284–303. doi: 10.1111/iops.12151.CrossRefGoogle Scholar
  7. Aho, K. A. (2014). Foundational and applied statistics for biologists using R. Boca Raton, FL: CRC Press.zbMATHGoogle Scholar
  8. American Psychological Association. (2009). Publication manual of the American Psychological Association (6th ed.). Washington, DC: American Psychological Association.Google Scholar
  9. American Psychological Association. (2011). Practice guidelines for LGB clients: Guidelines for psychological practice with lesbian, gay, and bisexual clients. Washington, DC: American Psychological Association. http://www.apa.org/pi/lgbt/resources/guidelines.aspx.
  10. American Psychological Association. (2013). Demographic characteristics of APA members by membership status. http://www.apa.org/workforce/publications/13-member/table-1.pdf.
  11. American Psychological Association. (2015). PsycINFO(R): A world-class resource for behavioral and social science research. Washington, DC: American Psychological Association. http://www.apa.org/pubs/databases/psycinfo/psycinfo-printable-fact-sheet.pdf.
  12. Aquino, J. (2014). descr: Descriptive statistics (Version 1.0.4). http://CRAN.R-project.org/package=descr.
  13. Aquino, J. (2015). descr: Descriptive statistics (Version 1.1.1). http://CRAN.R-project.org/package=descr.
  14. Bagilhole, B. (1993). How to keep a good woman down: An investigation of the role of institutional factors in the process of discrimination against women academics. British Journal of Sociology of Education, 14, 261–274. doi: 10.1080/0142569930140303.CrossRefGoogle Scholar
  15. Barnard-Brak, L., Saxon, T. F., & Johnson, H. (2011). Publication productivity among doctoral graduates of educational psychology programs at research universities before and after the year 2000. Educational Psychology Review, 23, 65–73. doi: 10.1007/s10648-010-9146-3.CrossRefGoogle Scholar
  16. Barnett, R. C., & Hyde, J. S. (2001). Women, men, work, and family. American Psychologist, 56, 781–796. doi: 10.1037/0003-066X.56.10.781.CrossRefGoogle Scholar
  17. Barrios, M., Villarroya, A., & Borrego, Á. (2013). Scientific production in psychology: A gender analysis. Scientometrics, 95, 15–23. doi: 10.1007/s11192-012-0816-4.CrossRefGoogle Scholar
  18. Benenson, J. F., Markovits, H., & Wrangham, R. (2014). Rank influences human sex differences in dyadic cooperation. Current Biology, 24, R190–R191. doi: 10.1016/j.cub.2013.12.047.CrossRefGoogle Scholar
  19. Bevelander, D., & Page, M. J. (2011). Ms. Trust: Gender, networks and trust—implications for management and education. Academy of Management Learning & Education, 10, 623–642. doi: 10.5465/amle.2009.0138.CrossRefGoogle Scholar
  20. Bordons, M., Fernández, M. T., & Gómez, I. (2002). Advantages and limitations in the use of impact factor measures for the assessment of research performance. Scientometrics, 53, 195–206. doi: 10.1023/A:1014800407876.CrossRefGoogle Scholar
  21. Bornmann, L., Mutz, R., & Daniel, H.-D. (2007). Gender differences in grant peer review: A meta-analysis. Journal of Informetrics, 1, 226–238. doi: 10.1016/j.joi.2007.03.001.CrossRefGoogle Scholar
  22. Boscardin, W. J. (2013, October 25). Approaches to handling missing data. Presented at the K-Scholars Seminar, San Francisco, CA. http://www.epibiostat.ucsf.edu/courses/RoadmapK12/11AM_seminars/boscardin102513.pdf.
  23. Boschini, A., & Sjögren, A. (2007). Is team formation gender neutral? Evidence from coauthorship patterns. Journal of Labor Economics, 25, 325–365. doi: 10.1086/510764.CrossRefGoogle Scholar
  24. Bowden, R. (2011, January 31). How to be a successful scientist. Naturejobs. Blog. http://blogs.nature.com/naturejobs/2011/01/31/how-to-be-a-successful-scientist.
  25. Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: Implications for scientific and technical human capital. Research Policy, 33, 599–616. doi: 10.1016/j.respol.2004.01.008.CrossRefGoogle Scholar
  26. Bozeman, B., & Gaughan, M. (2011). How do men and women differ in research collaborations? An analysis of the collaborative motives and strategies of academic researchers. Research Policy, 40, 1393–1402. doi: 10.1016/j.respol.2011.07.002.CrossRefGoogle Scholar
  27. Brown, A. (2014). Double-blind under review. Nature Nanotechnology, 9, 871–872. doi: 10.1038/nnano.2014.265.Google Scholar
  28. Capéraà, P., & Genest, C. (1993). Spearman’s ρ is larger than Kendall’s τ for positively dependent random variables. Journal of Nonparametric Statistics, 2, 183–194. doi: 10.1080/10485259308832551.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Castelvecchi, D. (2015, May 15). Physics paper sets record with more than 5000 authors. Nature News & Comment. http://www.nature.com/news/physics-paper-sets-record-with-more-than-5-000-authors-1.17567.
  30. Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences, 108, 3157–3162. doi: 10.1073/pnas.1014871108.CrossRefGoogle Scholar
  31. Committee on Facilitating Interdisciplinary Research, National Academy of Sciences, National Academy of Engineering, & Institute of Medicine. (2004). Facilitating interdisciplinary research. Washington, DC: The National Academies Press. http://www.nap.edu/catalog/11153/facilitating-interdisciplinary-research.
  32. Committee on the Science of Team Science, Board on Behavioral, Cognitive, and Sensory Sciences, Division of Behavioral and Social Sciences and Education, & National Research Council. (2015). Enhancing the effectiveness of team science. (N. J. Cooke & M. L. Hilton, Eds.). Washington, DC: The National Academies Press. http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science.
  33. Costa, P. J., Terracciano, A., & McCrae, R. R. (2001). Gender differences in personality traits across cultures: Robust and surprising findings. Journal of Personality and Social Psychology, 81, 110–117. doi: 10.1037/0022-3514.81.2.322.CrossRefGoogle Scholar
  34. Costanza, D. P., & Jensen, J. M. (2010). The fifth scenario: Identity expansion in organizational psychology. Industrial and Organizational Psychology, 3, 281–285. doi: 10.1111/j.1754-9434.2010.01240.x.CrossRefGoogle Scholar
  35. de Beaver, D. B., & Rosen, R. (1978). Studies in scientific collaboration: Part I—professional origins of scientific co-authorship. Scientometrics, 1, 65–84. doi: 10.1007/BF02016840.CrossRefGoogle Scholar
  36. De Meuse, K. P., Yang, K. Y., & Feil, J. (2014). A critical analysis of topical content and authorship trends in applied psychology. TIP: The Industrial-Organizational Psychologist, 51, 20–35. http://www.siop.org/tip/april14/demeuse.pdf.
  37. de Solla Price, D. J., & de Beaver, D. B. (1966). Collaboration in an invisible college. American Psychologist, 21, 1011–1018. doi: 10.1037/h0024051.CrossRefGoogle Scholar
  38. De Stefano, D., Fuccella, V., Vitale, M. P., & Zaccarin, S. (2013). The use of different data sources in the analysis of co-authorship networks and scientific performance. Social Networks, 35, 370–381. doi: 10.1016/j.socnet.2013.04.004.CrossRefGoogle Scholar
  39. del Re, A. C. (2013). compute.es: Compute effect sizes. http://cran.r-project.org/web/packages/compute.es.
  40. Demarest, B., Freeman, G., & Sugimoto, C. R. (2014). The reviewer in the mirror: Examining gendered and ethnicized notions of reciprocity in peer review. Scientometrics, 101, 717–735. doi: 10.1007/s11192-014-1354-z.CrossRefGoogle Scholar
  41. Ductor, L. (2015). Does co-authorship lead to higher academic productivity? Oxford Bulletin of Economics and Statistics, 77, 385–407. doi: 10.1111/obes.12070.CrossRefGoogle Scholar
  42. Eagly, A. H., & Karau, S. J. (2002). Role congruity theory of prejudice toward female leaders. Psychological Review, 109, 573–598. doi: 10.1037/0033-295X.109.3.573.CrossRefGoogle Scholar
  43. Feingold, A. (1994). Gender differences in personality: A meta-analysis. Psychological Bulletin, 116, 429–456. doi: 10.1037/0033-2909.116.3.429.CrossRefGoogle Scholar
  44. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Thousand Oaks, CA: Sage.zbMATHGoogle Scholar
  45. Finkelstein, L. M., Kulas, J. T., & Dages, K. D. (2003). Age differences in proactive newcomer socialization strategies in two populations. Journal of Business and Psychology, 17, 473–502. doi: 10.1023/A:1023400201387.CrossRefGoogle Scholar
  46. Fisher, B. S., Cobane, C. T., Ven, T. M. V., & Cullen, F. T. (1998). How many authors does it take to publish an article? Trends and patterns in political science. PS: Political Science and Politics, 31, 847–856. doi: 10.2307/420730.Google Scholar
  47. Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks, CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/.
  48. Fu, F., Nowak, M. A., Christakis, N. A., & Fowler, J. H. (2012). The evolution of homophily. Scientific Reports, 2(845), 1–6. doi: 10.1038/srep00845.Google Scholar
  49. Garg, K. C., & Kumar, S. (2013). Scientometric profile of Indian scientific output in life sciences with a focus on the contributions of women scientists. Scientometrics, 98, 1771–1783. doi: 10.1007/s11192-013-1107-4.CrossRefGoogle Scholar
  50. Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: A case study of Harvard University’s publications. Scientometrics, 87, 251–265. doi: 10.1007/s11192-011-0343-8.CrossRefGoogle Scholar
  51. Gazni, A., Sugimoto, C. R., & Didegah, F. (2012). Mapping world scientific collaboration: Authors, institutions, and countries. Journal of the American Society for Information Science and Technology, 63, 323–335. doi: 10.1002/asi.21688.CrossRefGoogle Scholar
  52. Genderize.io. (2015, June). Genderize.io | Determine the gender of a first name. https://genderize.io/#overview.
  53. Gentile, B., Grabe, S., Dolan-Pascoe, B., Twenge, J. M., Wells, B. E., & Maitino, A. (2009). Gender differences in domain-specific self-esteem: A meta-analysis. Review of General Psychology, 13, 34–45. doi: 10.1037/a0013689.CrossRefGoogle Scholar
  54. Glänzel, W. (2002). Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50, 461.Google Scholar
  55. Glänzel, W., & Schoepflin, U. (1994). Little scientometrics, big scientometrics… and beyond? Scientometrics, 30, 375–384. doi: 10.1007/BF02018107.CrossRefGoogle Scholar
  56. Glänzel, W., & Schubert, A. (2004). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Dordrecht: Kluwer. doi: 10.1007/1-4020-2755-9.Google Scholar
  57. Hankin, R. K. S. (2006). Special functions in R: Introducing the gsl package. R News, 6(4), 24–26. https://cran.r-project.org/web/packages/gsl/vignettes/gslpaper.pdf.015.
  58. Harzing, A.-W. (2012). A preliminary test of Google Scholar as a source for citation data: A longitudinal study of Nobel prize winners. Scientometrics, 94, 1057–1075. doi: 10.1007/s11192-012-0777-7.CrossRefGoogle Scholar
  59. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Press.Google Scholar
  60. Hekelman, D. F. P., Zyzanski, S. J., & Flocke, S. A. (1995). Successful and less-successful research performance of junior faculty. Research in Higher Education, 36, 235–255. doi: 10.1007/BF02207790.CrossRefGoogle Scholar
  61. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 61–83. doi: 10.1017/S0140525X0999152X.CrossRefGoogle Scholar
  62. Hlavac, M. (2015). stargazer: Well-formatted regression and summary statistics tables. Cambridge, MA: Harvard University. http://CRAN.R-project.org/package=stargazer.
  63. Holgate, S. A. (2012). How to collaborate. Science Career Magazine,. doi: 10.1126/science.caredit.a1200082.Google Scholar
  64. Holliday, C. O. (2012). Universities, key to prosperity. Science, 336, 1482. doi: 10.1126/science.1225457.CrossRefGoogle Scholar
  65. Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software,. doi: 10.18637/jss.v028.i08.Google Scholar
  66. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 581–592. doi: 10.1037/0003-066X.60.6.581.CrossRefGoogle Scholar
  67. Ingraham, C. (2014, May 31). There are 39 major studio releases coming this summer: Only one is directed by a woman. The Washington Post. http://www.washingtonpost.com/blogs/wonkblog/wp/2014/05/31/there-are-39-major-studio-releases-coming-this-summer-only-one-is-directed-by-a-woman/.
  68. Joecks, J., Pull, K., & Backes-Gellner, U. (2013). Childbearing and (female) research productivity: A personnel economics perspective on the leaky pipeline. Journal of Business Economics, 84, 517–530. doi: 10.1007/s11573-013-0676-2.CrossRefGoogle Scholar
  69. Johnson, P. E. (2015). rockchalk: Regression estimation and presentation. Lawrence, KS: College of Liberal Arts and Sciences - Political Science, Center for Research Methods & Data Analysis. https://cran.r-project.org/web/packages/rockchalk/index.html.
  70. Joseph, D. L., & Newman, D. A. (2010). Emotional intelligence: An integrative meta-analysis and cascading model. Journal of Applied Psychology, 95, 54–78. doi: 10.1037/a0017286.CrossRefGoogle Scholar
  71. Jyrkinen, M., & McKie, L. (2012). Gender, age and ageism: Experiences of women managers in Finland and Scotland. Work, Employment & Society, 26, 61–77. doi: 10.1177/0950017011426313.CrossRefGoogle Scholar
  72. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26, 1–18. doi: 10.1016/S0048-7333(96)00917-1.CrossRefGoogle Scholar
  73. Knobloch-Westerwick, S., Glynn, C. J., & Huge, M. (2013). The Matilda effect in science communication: An experiment on gender bias in publication quality perceptions and collaboration interest. Science Communication, 35, 603–625. doi: 10.1177/1075547012472684.CrossRefGoogle Scholar
  74. Koller, M., & Stahel, W. A. (2011). Sharpening Wald-type inference in robust regression for small samples. Computational Statistics & Data Analysis, 55, 2504–2515. doi: 10.1016/j.csda.2011.02.014.MathSciNetCrossRefGoogle Scholar
  75. König, C. J., Fell, C. B., Kellnhofer, L., & Schui, G. (2015). Are there gender differences among researchers from industrial/organizational psychology? Scientometrics, 105, 1931–1952. doi: 10.1007/s11192-015-1646-y.CrossRefGoogle Scholar
  76. Krampen, G., Fell, C., & Schui, G. (2011). Psychologists’ research activities and professional information-seeking behaviour: Empirical analyses with reference to the theory of the intellectual and social organization of the sciences. Journal of Information Science, 37, 439–450. doi: 10.1177/0165551511412148.CrossRefGoogle Scholar
  77. Kretschmer, H., Kundra, R., de Beaver, D. B., & Kretschmer, T. (2012). Gender bias in journals of gender studies. Scientometrics, 93, 135–150. doi: 10.1007/s11192-012-0661-5.CrossRefGoogle Scholar
  78. Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53, 814–861. doi: 10.1080/01621459.1958.10501481.MathSciNetzbMATHCrossRefGoogle Scholar
  79. Kyvik, S., & Teigen, M. (1996). Child care, research collaboration, and gender differences in scientific productivity. Science, Technology and Human Values, 21, 54–71. doi: 10.1177/016224399602100103.CrossRefGoogle Scholar
  80. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921. doi: 10.1038/35057062.CrossRefGoogle Scholar
  81. Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504, 211–213. doi: 10.1038/504211a.CrossRefGoogle Scholar
  82. Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35, 673–702. doi: 10.1177/0306312705052359.CrossRefGoogle Scholar
  83. Lee, C. J., Sugimoto, C. R., Zhang, G., & Cronin, B. (2013). Bias in peer review. Journal of the American Society for Information Science and Technology, 64, 2–17. doi: 10.1002/asi.22784.CrossRefGoogle Scholar
  84. Lips, H. M. (2013). The gender pay gap: Challenging the rationalizations: Perceived equity, discrimination, and the limits of human capital models. Sex Roles, 68, 169–185. doi: 10.1007/s11199-012-0165-z.CrossRefGoogle Scholar
  85. Malakoff, D. (2000). Does science drive the productivity train? Science, 289, 1274–1276. doi: 10.1126/science.289.5483.1274.CrossRefGoogle Scholar
  86. Malouff, J., Schutte, N., & Priest, J. (2010). Publication rates of Australian academic psychologists. Australian Psychologist, 45, 78–83. doi: 10.1080/00050060903078536.CrossRefGoogle Scholar
  87. Mayrath, M. C. (2007). Attributions of productive authors in educational psychology journals. Educational Psychology Review, 20, 41–56. doi: 10.1007/s10648-007-9059-y.CrossRefGoogle Scholar
  88. McCormick, C. B., & Barnes, B. J. (2007). Getting started in academia: A guide for educational psychologists. Educational Psychology Review, 20, 5–18. doi: 10.1007/s10648-007-9058-z.CrossRefGoogle Scholar
  89. McCrae, R. R., & Costa, P. T. (1989). The structure of interpersonal traits: Wiggins’s circumplex and the five-factor model. Journal of Personality and Social Psychology, 56, 586–595. doi: 10.1037/0022-3514.56.4.586.CrossRefGoogle Scholar
  90. McDonald, P., Guthrie, D., Bradley, L., & Shakespeare-Finch, J. (2005). Investigating work-family policy aims and employee experiences. Employee Relations, 27, 478–494. doi: 10.1108/01425450510612013.CrossRefGoogle Scholar
  91. McDowell, J. M., Singell, J., Larry, D., & Stater, M. (2006). Two to tango? Gender differences in the decisions to publish and coauthor. Economic Inquiry, 44, 153–168. doi: 10.1093/ei/cbi065.CrossRefGoogle Scholar
  92. McGovern, V. (2009). Perspective: How to succeed in big science and still get tenure. Science Career Magazine,. doi: 10.1126/science.caredit.a0900092.Google Scholar
  93. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. doi: 10.1146/annurev.soc.27.1.415.CrossRefGoogle Scholar
  94. Melin, G. (2000). Pragmatism and self-organization: Research collaboration on the individual level. Research Policy, 29, 31–40. doi: 10.1016/S0048-7333(99)00031-1.CrossRefGoogle Scholar
  95. Menking, A. (2015, March 9). Gender as a text field: What Wikipedia can learn from Facebook. Wikimedia blog. Blog. http://blog.wikimedia.org/2015/03/09/gender-as-a-text-field/.
  96. Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159, 56–63. doi: 10.1126/science.159.3810.56.CrossRefGoogle Scholar
  97. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238. doi: 10.1177/000312240406900204.CrossRefGoogle Scholar
  98. Moore, A., & Mamiseishvili, K. (2012). Examining the relationship between emotional intelligence and group cohesion. Journal of Education for Business, 87, 296–302. doi: 10.1080/08832323.2011.623197.CrossRefGoogle Scholar
  99. Naldi, F., Luzi, D., Valente, A., & Parenti, I. V. (2004). Scientific and technological performance by gender. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 299–314). Dordrecht: Kluwer. doi: 10.1007/1-4020-2755-9.Google Scholar
  100. National Science Board. (2014). Science & engineering indicators 2014. Arlington, VA: National Science Foundation. http://www.nsf.gov/statistics/seind14/content/etc/nsb1401.pdf.
  101. Nature Editorial. (2013). Science for all. Nature, 495, 5. doi: 10.1038/495005a.CrossRefGoogle Scholar
  102. Navarro, D. (2015). Learning statistics with R: A tutorial for psychology students and other beginners (Version 0.5). Adelaide: University of Adelaide. http://ua.edu.au/ccs/teaching/lsr.
  103. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98, 404–409. doi: 10.1073/pnas.98.2.404.MathSciNetzbMATHCrossRefGoogle Scholar
  104. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl 1), 5200–5205. doi: 10.1073/pnas.0307545100.CrossRefGoogle Scholar
  105. O*NET. (2014). Details report for: 19-3032.00—Industrial-organizational psychologists. http://www.onetonline.org/link/details/19-3032.00.
  106. O*NET. (2015, July 23). Work activities: Establishing and maintaining interpersonal relationships. O*NET OnLine. http://www.onetonline.org/find/descriptor/result/4.A.4.a.4?a=1.
  107. Ozel, B., Kretschmer, H., & Kretschmer, T. (2014). Co-authorship pair distribution patterns by gender. Scientometrics, 98, 703–723. doi: 10.1007/s11192-013-1145-y.CrossRefGoogle Scholar
  108. Perc, M. (2014). The Matthew effect in empirical data. Interface, 11, 20140378. doi: 10.1098/rsif.2014.0378.Google Scholar
  109. Persson, O., Glänzel, W., & Danell, R. (2004). Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60, 421–432. doi: 10.1023/B:SCIE.0000034384.35498.7d.CrossRefGoogle Scholar
  110. Prpić, K. (2002). Gender and productivity differentials in science. Scientometrics, 55, 27–58. doi: 10.1023/A:1016046819457.CrossRefGoogle Scholar
  111. Raan, A. F. J. V. (1998). The influence of international collaboration on the impact of research results. Scientometrics, 42, 423–428. doi: 10.1007/BF02458380.CrossRefGoogle Scholar
  112. R Core Team. (2015a). R: A language and environment for statistical computing (Version x64 3.2.1). Vienna: R Foundation for Statistical Computing. http://www.r-project.org/.
  113. R Core Team. (2015b). R: A language and environment for statistical computing (Version x64 3.1.3). Vienna: R Foundation for Statistical Computing. http://www.r-project.org/.
  114. Revelle, W. (2015). psych: Procedures for psychological, psychometric, and personality research. Evanston, IL: Northwestern University. http://CRAN.R-project.org/package=psych.
  115. Rhoads, S. E., & Rhoads, C. H. (2012). Gender roles and infant/toddler care: Male and female professors on the tenure track. Journal of Social, Evolutionary, and Cultural Psychology, 6, 13–31. doi: 10.1037/h0099227.CrossRefGoogle Scholar
  116. Rosenthal, P., Guest, D., & Peccei, R. (1996). Gender difference in managers’ causal explanations for their work performance: A study in two organizations. Journal of Occupational and Organizational Psychology, 69, 145–151. doi: 10.1111/j.2044-8325.1996.tb00606.x.CrossRefGoogle Scholar
  117. Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., et al. (2015). robustbase: Basic robust statistics. https://cran.r-project.org/web/packages/robustbase.
  118. Rupert, P. A., & Kent, J. S. (2007). Gender and work setting differences in career-sustaining behaviors and burnout among professional psychologists. Professional Psychology: Research and Practice, 38, 88–96. doi: 10.1037/0735-7028.38.1.88.CrossRefGoogle Scholar
  119. Sarkar, D. (2008). Lattice: Multivariate data visualization with R. New York, NY: Springer. http://lmdvr.r-forge.r-project.org.
  120. Schmitt, D. P., Allik, J., McCrae, R. R., & Benet-Martínez, V. (2007). The geographic distribution of big five personality traits: Patterns and profiles of human self-description across 56 nations. Journal of Cross-Cultural Psychology, 38, 173–212. doi: 10.1177/0022022106297299.CrossRefGoogle Scholar
  121. Schui, G., & Krampen, G. (2015). ZPID-Monitor 2012 zur Internationalität der Psychologie aus dem deutschsprachigen Bereich: Der Kurzbericht [2012 ZPID Monitor on the internationality of psychology in the German-speaking countries: Brief report]. Psychologische Rundschau, 66, 124–127. doi: 10.1026/0033-3042/a000234.CrossRefGoogle Scholar
  122. Seagram, B. C., Gould, J., & Pyke, S. W. (1998). An investigation of gender and other variables on time to completion of doctoral degrees. Research in Higher Education, 39, 319–335. doi: 10.1023/A:1018781118312.CrossRefGoogle Scholar
  123. Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. BMJ: British Medical Journal, 314, 498–502. doi: 10.1136/bmj.314.7079.497.CrossRefGoogle Scholar
  124. Sheltzer, J. M., & Smith, J. C. (2014). Elite male faculty in the life sciences employ fewer women. Proceedings of the National Academy of Sciences, 111, 10107–10112. doi: 10.1073/pnas.1403334111.CrossRefGoogle Scholar
  125. Smith, M. J., Weinberger, C., Bruna, E. M., & Allesina, S. (2014). The scientific impact of nations: Journal placement and citation performance. PLoS ONE, 9, e109195. doi: 10.1371/journal.pone.0109195.CrossRefGoogle Scholar
  126. Society for the Psychological Study of Lesbian, Gay, Bisexual, and Transgender Issues. (2014, August 7). Div. 44 Bylaws. http://www.apadivisions.org/division-44/about/index.aspx. http://www.apadivisions.org/division-44/about/bylaws.aspx.
  127. Solymos, P. (2014). pbapply: Adding progress bar to “*apply” functions. http://CRAN.R-project.org/package=pbapply.
  128. Spurk, D., Meinecke, A. L., Kauffeld, S., & Volmer, J. (2015). Gender, professional networks, and subjective career success within early academic science careers: The role of gender composition in inside and outside departmental support networks. Journal of Personnel Psychology, 14, 121–130. doi: 10.1027/1866-5888/a000131.CrossRefGoogle Scholar
  129. Tate, C. C., Ledbetter, J. N., & Youssef, C. P. (2013). A two-question method for assessing gender categories in the social and medical sciences. Journal of Sex Research, 50, 767–776. doi: 10.1080/00224499.2012.690110.CrossRefGoogle Scholar
  130. Temple Lang, D. (2013). XML: Tools for parsing and generating XML within R and S-Plus. http://CRAN.R-project.org/package=XML.
  131. Temple Lang, D. (2015). RCurl: General network (HTTP/FTP/…) client interface for R. http://CRAN.R-project.org/package=RCurl.
  132. Thomson Reuters. (2013a). Journal Citation Reports(R) Science Edition 2012. JCR-Web 4.5 Welcome. http://admin-apps.webofknowledge.com/JCR/JCR.
  133. Thomson Reuters. (2013b). Journal Citation Reports(R) Social Science Edition 2012. JCR-Web 4.5 Welcome. http://admin-apps.webofknowledge.com/JCR/JCR.
  134. Treviño, L. J., Gomez-Mejia, L. R., Balkin, D. B., & Mixon, F. G. (2015). Meritocracies or masculinities? The differential allocation of named professorships by gender in the academy. Journal of Management, Advance online publication,. doi: 10.1177/0149206315599216.Google Scholar
  135. Üsdiken, B. (1996). Importing theories of management and organization: The case of Turkish academia. International Studies of Management & Organization, 26(3), 33–46. http://www.jstor.org/stable/40397344.
  136. van Emmerik, I. H. (2006). Gender differences in the creation of different types of social capital: A multilevel study. Social Networks, 28, 24–37. doi: 10.1016/j.socnet.2005.04.002.CrossRefGoogle Scholar
  137. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351. doi: 10.1126/science.1058040.CrossRefGoogle Scholar
  138. Wais, K. (2015a). genderizeR: Gender prediction based on first names (Version 1.2.0). http://CRAN.R-project.org/package=genderizeR.
  139. Wais, K. (2015b). genderizeR: Gender prediction based on first names (Version 1.1.0). http://CRAN.R-project.org/package=genderizeR.
  140. Wanberg, C. R., Kanfer, R., & Banas, J. T. (2000). Predictors and outcomes of networking intensity among unemployed job seekers. Journal of Applied Psychology, 85, 491–503. doi: 10.1037/0021-9010.85.4.491.CrossRefGoogle Scholar
  141. West, J. D., Jacquet, J., King, M. M., Correll, S. J., & Bergstrom, C. T. (2013). The role of gender in scholarly authorship. PLoS ONE, 8, e66212. doi: 10.1371/journal.pone.0066212.CrossRefGoogle Scholar
  142. Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40. http://www.jstatsoft.org/v40/i01/paper.
  143. Wickham, H. (2012). stringr: Make it easier to work with strings. http://CRAN.R-project.org/package=stringr.
  144. Wolff, H.-G., & Muck, P. M. (2009). Persönlichkeit und Networking: Eine Analyse mittels interpersonalem Circumplex [Personality and networking: An analysis based on the interpersonal circumplex]. Zeitschrift für Personalpsychologie, 8, 106–116. doi: 10.1026/1617-6391.8.3.106.CrossRefGoogle Scholar
  145. Yatani, K. (2014). Wilcoxon Signed-rank test. http://yatani.jp/teaching/doku.php?id=hcistats:wilcoxonsigned.
  146. Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics, 15, 642–656. doi: 10.1214/aos/1176350366.MathSciNetzbMATHCrossRefGoogle Scholar
  147. Young, L. (2014, September 9). Women make up more than half the U.S. population, less than one fourth of U.S. House witnesses. Sunlight Foundation. Blog. http://sunlightfoundation.com/blog/2014/09/09/women-make-up-half-the-u-s-population-one-fourth-of-u-s-house-witnesses/.
  148. Yuret, T. (2014). Why do economists publish less? Applied Economics Letters, 21, 760–762. doi: 10.1080/13504851.2014.889792.CrossRefGoogle Scholar
  149. Zawacki-Richter, O., & von Prummer, C. (2010). Gender and collaboration patterns in distance education research. Open Learning: The Journal of Open and Distance Learning, 25, 95–114. doi: 10.1080/02680511003787297.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Fachrichtung PsychologieUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations