, Volume 108, Issue 1, pp 441–455 | Cite as

The advantages of an Ontology-Based Data Management approach: openness, interoperability and data quality

  • Cinzia DaraioEmail author
  • Maurizio Lenzerini
  • Claudio Leporelli
  • Paolo Naggar
  • Andrea Bonaccorsi
  • Alessandro Bartolucci


We illustrate the usefulness of an Ontology-Based Data Management (OBDM) approach to develop an open information system, allowing for a deep level of interoperability among different databases, and accounting for additional dimensions of data quality compared to the standard dimensions of the OECD (Quality framework and guidelines for OECD statistical activities, OECD Publishing, Paris, 2011) Quality Framework. Recent advances in engineering in computer science provide promising tools to solve some of the crucial issues in data integration for Research and Innovation.


Data integration Open data Comparability Standardization Modularization Interoperability Data quality Research and innovation 



The helpful and precious comments and suggestions of Henk F. Moed are warmly acknowledged. Research support from the Award Project 2015 No. C26H15XNFS of the Sapienza university of Rome is gratefully acknowledged.


  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.). (2007). The description logic handbook: Theory, implementation and applications (2nd ed.). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  2. Baldwin, C. Y., & Clark, K. (2000). Design rules—The power of modularity. Cambridge: MIT Press.Google Scholar
  3. Borgman, C. L. (2015). Big data, little data, no data: Scholarship in the networked world. Cambridge: MIT Press.Google Scholar
  4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., & Rosati, R. (2009a). Ontologies and databases: The DL-Lite approach. In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset & R. A. Schmidt (Eds.), Reasoning Web. Semantic Technologies for Information Systems, Lecture Notes in Computer Science (Vol. 5689, pp. 255–356). Berlin: Springer.Google Scholar
  5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2009b). Ontology-based data access and integration. Encyclopedia of database systems. Berlin: Springer.zbMATHGoogle Scholar
  6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., et al. (2011). The Mastro system for ontology-based data access. Semantic Web, 2(1), 43–53.Google Scholar
  7. Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L., & Santarelli, V. (2013). Mastro studio: Managing ontology-based data access applications. Proceedings of the VLDB Endowment, 6(12), 1314–1317.CrossRefGoogle Scholar
  8. Console, M., & Lenzerini, M. (2014). Data quality in ontology-based data access: The case of consistency. AAAI, 2014, 1020–1026.Google Scholar
  9. Daraio, C. (Eds.). (2015). Efficiency, effectiveness and impact of research and innovation. In Proceedings of the workshop of the 20 February 2015 DIAG, Sapienza University of Rome, Efesto Edizioni, Rome. ISBN 9788899104306.Google Scholar
  10. Daraio, C., Lenzerini, M., Leporelli, C., Moed, F. H., Naggar, P., Bonaccorsi, A., & Bartolucci, A. (2016). Data integration for research and innovation policy: An ontology-based data management approach. Scientometrics, 106(2), 857–871.CrossRefGoogle Scholar
  11. European Commission (2010). Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A digital agenda for Europe, Brussels. COM(2010)245 final. Available at: Accessed 19 May 2010.
  12. Floridi, L. (2014). The fourth revolution: How the infosphere is reshaping human reality. Oxford: OUP Oxford.Google Scholar
  13. Hanson, B., Sugden, A., & Alberts, B. (2011). Making data maximally available. Science, 331(6018), 649.CrossRefGoogle Scholar
  14. Hilbert, M., & López, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 60–65.CrossRefGoogle Scholar
  15. Huijboom, N., & Van den Broek, T. (2011). Open data: An international comparison of strategies. European Journal of ePractice, 12(1), 4–16.Google Scholar
  16. Kshetri, N. (2014). Big data's impact on privacy, security and consumer welfare. Telecommunications Policy, 38(11), 1134–1145.CrossRefGoogle Scholar
  17. Lenzerini, M. (2002). Data integration: A theoretical perspective. PODS, 2002, 233–246.Google Scholar
  18. Lenzerini, M. (2011). Ontology-based data management. CIKM, 2011, 5–6.Google Scholar
  19. Li, X., & Johnson, J. D. (2002). Evaluate IT investment opportunities using real options theory. Information Resources Management Journal, 15(3), 32–47.CrossRefGoogle Scholar
  20. Moed, H. F. (2016). Altmetrics as traces of the computerization of the research process. In C. R. Sugimoto (Ed.), Theories of informetrics and scholarly communication. A Festschrift in honor of Blaise Cronin (pp. 360–371). Berlin: De Gruyter.Google Scholar
  21. National Research Council. (2004). Open access and the public domain in digital data and information for science: Proceedings of an international symposium. Washington, DC: The National Academies Press.Google Scholar
  22. National Research Council. (2012). The case for international sharing of scientific data: A focus on developing countries. Washington, D.C.: National Academies Press.Google Scholar
  23. Nielsen, M. (2012). Reinventing discovery: The new era of networked science. Princeton: Princeton University Press.Google Scholar
  24. OECD. (2011). Quality framework and guidelines for OECD statistical activities. Paris: OECD Publishing.Google Scholar
  25. OECD. (2015). Making open science a reality. OECD science, technology and industry policy papers no. 25. Paris: OECD Publishing.
  26. Parent, C., & Spaccapietra, S. (2000). Database integration: The key to data interoperability. In M. P. Papazoglou & Z. Zari (Eds.), Advances in object-oriented data modeling (pp. 221–253). Cambridge: The MIT press.Google Scholar
  27. Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of The ACM, 15(12), 1053–1058.CrossRefGoogle Scholar
  28. Pinfield, S., Salter, J., Bath, P. A., Hubbard, B., Millington, P., Anders, J. H., & Hussain, A. (2014). Open access repositories worldwide, 2005–2012: Past growth, current characteristics, and future possibilities. Journal of the Association for Information Science and Technology, 65(12), 2404–2421.CrossRefGoogle Scholar
  29. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008). Linking data to ontologies. In S. Spaccapietra (Ed.), Journal on Data Semantics X, Lecture Notes in Computer Science (Vol. 4900, pp. 133–173). Berlin: Springer.Google Scholar
  30. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  31. Tolk, A., Muguira, J. A. (2003). The levels of conceptual interoperability model. In Proceedings of the 2003 fall simulation interoperability workshop (Vol. 7).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Cinzia Daraio
    • 1
    Email author
  • Maurizio Lenzerini
    • 1
  • Claudio Leporelli
    • 1
  • Paolo Naggar
    • 2
  • Andrea Bonaccorsi
    • 3
  • Alessandro Bartolucci
    • 2
  1. 1.Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG)Sapienza University of RomeRomeItaly
  2. 2.Studiare Ltd.RomeItaly
  3. 3.Dipartimento di Ingegneria dell’Energia dei Sistemi del Territorio e delle Costruzioni (DESTEC)University of PisaPisaItaly

Personalised recommendations