Scientometrics

, Volume 106, Issue 3, pp 945–966 | Cite as

Linking as voting: how the Condorcet jury theorem in political science is relevant to webometrics

  • George Masterton
  • Erik J. Olsson
  • Staffan Angere
Article

Abstract

A webmaster’s decision to link to a webpage can be interpreted as a “vote” for that webpage. But how far does the parallel between linking and voting extend? In this paper, we prove several “linking theorems” showing that link-based ranking tracks importance on the web in the limit as the number of webpages grows, given independence and minimal linking competence. The theorems are similar in spirit to the voting, or jury, theorem famously attributed to the 18th century mathematician Nicolas de Condorcet. We argue that the linking theorems provide a fundamental epistemological justification for link-based ranking on the web, analogous to the justification that Condorcet’s theorems bestow on majority voting as a basic democratic procedure. The analogy extends to the practical limitations facing both kinds of result, in particular due to limited voting/linking independence. However, we argue, referring to the theoretical developments inspired by the jury theorem, that some of the pessimism expressed in the webometrics literature regarding the possibility of a “theory of linking” may be unjustified. The present study connects the two academic disciplines of webometrics in information science and epistemic democracy in political science by showing how they share a common structure. As such, it opens up new possibilities for theoretical cross-fertilization and interdisciplinary transference of concepts and results. In particular, we show how the relatively young field of webometrics can benefit from the extensive and sophisticated literature on the Condorcet jury theorem.

Keywords

Webometrics Condorcet jury theorem Linking Independence Ranking PageRank 

References

  1. Almind, T. C., & Ingwersen, P. (1997). Informetric analyses on the World Wide Web: Methodological approaches to ‘webometrics’. Journal of Documentation, 53(4), 404–426.CrossRefGoogle Scholar
  2. Auletta, K. (2010). Googled: The end of the world as we know it. London: The Penguin Press.Google Scholar
  3. Barabási, A. L. (2002). Linked: The new science of networks. Cambridge, Massachusetts: Perseus Publishing.Google Scholar
  4. Bar-Ilan, J. (2004). A microscopic link analysis of academic institutions within a country: The case of Israel. Scientometrics, 59(3), 391–403.CrossRefGoogle Scholar
  5. Berg, S. (1993). Condorcet’s jury theorem: Dependency among voters. Social Choice and Welfare, 10, 87–95.CrossRefMathSciNetMATHGoogle Scholar
  6. Björneborn, L., & Ingwersen, P. (2001). Perspectives of webometrics. Scientometrics, 50(1), 65–82.CrossRefGoogle Scholar
  7. Boland, P. J. (1989). “Majority systems and the Condorcet jury theorem. Journal of the Royal Statistical Society, Series D (The Statistician), 38, 181–189.Google Scholar
  8. Boland, P. J., Proschan, F., & Tong, Y. (1989). Modelling dependence in simple and indirect majority systems. Journal of Applied Probability, 26, 81–88.CrossRefMathSciNetMATHGoogle Scholar
  9. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine”, WWW 1998. In Seventh international world-wide web conference. Brisbane, Australia.Google Scholar
  10. Brin, S., Page, L., Motwami, R., & Winograd, T. (1998). The PageRank citation ranking: Bringing order to the web. Stanford University Technical Report.Google Scholar
  11. Cohen, J. (1986). An epistemic conception of democracy. Ethics, 97, 26–38.CrossRefGoogle Scholar
  12. Davenport, E., & Cronin, B. (2000). The citation network as a prototype for representing trust in virtual environments. In B. Cronin & H. B. Atkins (Eds.), The web of knowledge: A Festschrift in Honor of Eugene Garfield. ASIS Monograph Series (pp. 517–534). Metford, NJ: Information Today Inc.Google Scholar
  13. de Condorcet, N. (1785). Essai sur l’application de l’analyse à la probabilité des decisions rendues à la pluralité des voix (Essay on the application of analysis to the probability of majority decisions). Paris: L'Impremerie Royale [facsimile edition New York: Chelsea, 1972].Google Scholar
  14. Diedrich, F., & Spiekermann, K. (2013). Epistemic democracy with defensible premises. Economics and Philosophy, 29, 87–120.CrossRefGoogle Scholar
  15. Dietrich, F. (2008). The premises of Condorcet’s jury theorem are not simultaneously justified. Episteme, 58, 56–73.CrossRefGoogle Scholar
  16. Dietrich, F., & List, C. (2004). A model of jury decisions where all jurors have the same evidence. Synthese, 142, 175–202.CrossRefMathSciNetMATHGoogle Scholar
  17. Estlund, D. M. (1994). Opinion leaders, independence, and Condorcet’s jury theorem. Theory and Decision, 36, 131–162.CrossRefMATHGoogle Scholar
  18. Estlund, D. M. (2008). Democratic authority: A philosophical framework. Princeton, NJ: Princeton University Press.Google Scholar
  19. Estlund, D., Waldron, J., Grofman, B., & Feld, S. L. (1989). Democratic theory and the public interest: Condorcet and Rousseau revisited. American Political Science Review, 83, 1317–1340.CrossRefGoogle Scholar
  20. Fortunato, S., Boguñá, M., Flammini, A., & Menczer, F. (2008). Approximating PageRank from In-Degree. In W. Aiello, A. Broder, J. Janssen & E. Milios (Eds.), Algorithms and models for the web-graph (pp. 59–71). Berlin/Heidelberg: Springer-Verlag.Google Scholar
  21. Franceschet, M. (2011). PageRank: Standing on the shoulders of giants. Communications of the ACM, 54(6), 92–101.CrossRefGoogle Scholar
  22. Gaus, G. (1997). Does democracy reveal the voice of the people? Four takes on Rousseau. Australasian Journal of Philosophy, 75, 141–162.CrossRefGoogle Scholar
  23. Goodin, R. E. (2003). Reflective democracy. Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Grofman, B., & Feld, S. L. (1988). Rousseau’s general will: A Condorcetian perspective. American Political Science Review, 82, 567–576.CrossRefGoogle Scholar
  25. Hernández-Borges, A. A., Macías-Cervi, P., Gaspar-Guardado, M. A., Torres-Álvarez de Arcaya, M. L., Ruiz-Rabaza, A., & Jiménez-Sosa, A. (1999). Can examination of WWW usage statistics and other indirect quality indicators distinguish the relative quality of medical Web sites? Journal of Medical Internet Research, 1(1). http://www.jmir.org/1999/1991/e1991/index.htm.
  26. Ingwersen, P. (1998). The calculation of web impact factors. Journal of Documentation, 54(2), 236–243.CrossRefGoogle Scholar
  27. Kaniovski, S. (2010). Aggregation of correlated votes and Condorcet’s jury theorem. Theory and Decision, 69, 453–468.CrossRefMathSciNetMATHGoogle Scholar
  28. Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30, 81–89.CrossRefMathSciNetMATHGoogle Scholar
  29. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.CrossRefMathSciNetMATHGoogle Scholar
  30. Ladha, K. K. (1992). The Condorcet’s jury theorem, free speech, and correlated votes. American Journal of Political Science, 36, 617–634.CrossRefGoogle Scholar
  31. Ladha, K. K. (1993). Condorcet’s jury theorem in light of de Finetti’s theorem. Social Choice and Welfare, 10, 69–85.CrossRefMathSciNetMATHGoogle Scholar
  32. Ladha, K. K. (1995). Information pooling through majority-rule voting: Condorcet’s jury theorem with correlated votes. Journal of Economic Behavior & Organization, 26, 353–372.CrossRefGoogle Scholar
  33. List, C., & Goodin, R. E. (2001). Epistemic democracy: Generalizing the Condorcet jury theorem. Journal of Political Philosophy, 9(3), 277–306.CrossRefGoogle Scholar
  34. Lorentzen, D. G. (2014). Webometrics benefitting from web mining? An investigation of methods and applications of two research fields. Scientometrics, 99, 409–445.CrossRefGoogle Scholar
  35. McLean, I., & Hewitt, F. (1994). Condorcet: Foundations of social choice and political theory. Northampton, MA: Edward Elgar Publishing Limited.Google Scholar
  36. Nitzan, S., & Paroush, J. (1984). The significance of independent decisions in uncertain dichotomous choice situations. Theory and Decision, 17, 47–60.CrossRefMathSciNetMATHGoogle Scholar
  37. Owen, G., Grofman, B., & Feld, S. L. (1989). Proving a distribution-free generalization of the Condorcet jury theorem. Mathematical Social Sciences, 17, 1–16.CrossRefMathSciNetMATHGoogle Scholar
  38. Palmer, J. W., Bailey, J. P., & Faraj, S. (2000). The role of intermediaries in the development of trust on the WWW: The use and prominence of trusted third parties and privacy statements. Journal of Computer-Mediated Communication, 5(3). doi:10.1111/j.1083-6101.2000.tb00342.x.
  39. Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge: Cambridge University Press.Google Scholar
  40. Rheingold, H. (2002). Smart mobs: The next social revolution. Cambridge, MA: Perseus Publishing.Google Scholar
  41. Romeijn, J., & Atkinson, D. (2011). A Condorcet jury theorem for unknown juror competence. Politics, Philosophy, and Economics, 10, 237–262.CrossRefGoogle Scholar
  42. Schweinberger, M., & Handcock, M. S. (2015). Local dependence in random graph models: Characterization, properties and statistical inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(3), 647–676.CrossRefMathSciNetGoogle Scholar
  43. Shapley, L., & Grofman, B. (1984). Optimizing group judgmental accuracy in the presence of interdependencies. Public Choice, 43, 329–343.CrossRefGoogle Scholar
  44. Spiekermann, K. R., & Goodin, R. E. (2012). Courts of many minds. British Journal of Political Science, 12, 555–571.CrossRefGoogle Scholar
  45. Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies, and nations. London: Little Brown.Google Scholar
  46. Thelwall, M. (2006). Interpreting social science link analysis research: A theoretical framework. Journal of the American Society for Information Science and Technology archive, 57(1), 60–68.CrossRefGoogle Scholar
  47. Vaughan, L., & Thelwall, M. (2003). Scholarly use of the web: What are the key inducers of links to journal web sites? Journal of the American Society for Information Science and Technology, 54(1), 29–38.CrossRefGoogle Scholar
  48. Vreeland, R. C. (2000). Law libraries in hyperspace: A citation analysis of World Wide Web sites. Law Library Journal, 92(1), 9–25.Google Scholar
  49. Wills, R. S. (2006). Google’s PageRAnk: The maths behind the search engine. The Mathematical Intelligencer, 28(4), 6–11.CrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • George Masterton
    • 1
  • Erik J. Olsson
    • 1
  • Staffan Angere
    • 1
  1. 1.Department of PhilosophyLund UniversityLundSweden

Personalised recommendations