Scientometrics

, Volume 104, Issue 2, pp 575–580

Detecting seminal research contributions to the development and use of the global positioning system by reference publication year spectroscopy

Article

Abstract

The global positioning system (GPS) represents one of the most compelling success stories of technology transfer from defense laboratories and academia to the private sector. In this short report, we applied a quantitative analysis to identify landmark research contributions to GPS. This technique, reference publication year spectroscopy (RPYS), yielded key insights into early works that allowed for both the development and widespread use of GPS. In addition, using this approach to identify individual contributions of scientific excellence offers an opportunity to credit not only the research investigators, but also their corresponding affiliations and funding sources. Indeed, the findings from our analysis suggest that RPYS might serve as a powerful tool to substantiate the contribution of funding agencies, universities and institutes to research fields. We stress, however, that this method should not stand-alone for such purposes, but should be wedded with the knowledge and experience of subject matter experts.

Keywords

Scientometrics Reference publication year spectroscopy Global positioning system Science policy Funding agencies 

References

  1. Comins, J. A., & Hussey, T. W. (2015). Compressing multiple scales of impact detection by reference publication year spectroscopy. Journal of Informetrics, 9, 449–454.Google Scholar
  2. Cronin, B. (2014). Scholars and scripts, spoors and scores. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indiactors of scholarly impact (pp. 3–21). Cambridge, MA: The MIT Press.Google Scholar
  3. Cronin, B., & Franks, S. (2006). Trading cultures: Resource mobilization and service rendering in the life sciences as revealed in the journal article’s paratext. American Society for Information Science, 57(14), 1909–1918. doi:10.1002/asi.CrossRefGoogle Scholar
  4. Dodo, J., Yakuba, T., Ojigi, L., & Tsebeje, S. (2013). Determination of the best-fit tropospheric delay model on the nigerian permanent GNSS network (NigNet). GNSS Positioning and Measurement II and Remote Sensing, (6525), 6–10. Retrieved from http://www.fig.net/pub/fig2013/papers/ts06b/TS06B_yakubu_ojigi_et_al_6525.pdf
  5. Enge, P., & Misra, P. (1999). Special issue on global positioning system. Proceedings of the IEEE, 87(1), 3–15.CrossRefGoogle Scholar
  6. Getting, I. (1993). The global positioning system. IEEE Spectrum, 30, 36–38.CrossRefGoogle Scholar
  7. Heffner, A. (1981). Funded research, multiple authorship, and subauthorship collaboration in four disciplines. Scientometrics, 3(1), 5–12. Retrieved from http://www.akademiai.com/index/N605344508V32281.pdf
  8. Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82, 35–45. Retrieved from http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
  9. Leydesdorff, L., Bornmann, L., Marx, W., & Milojević, S. (2014). Referenced Publication Years Spectroscopy applied to iMetrics: Scientometrics, Journal of Informetrics, and a relevant subset of JASIST. Journal of Informetrics, 1901, 1–34. Retrieved from http://www.sciencedirect.com/science/article/pii/S1751157713001077
  10. Marx, W., & Bornmann, L. (2013). Tracing the origin of a scientific legend by reference publication year spectroscopy (RPYS): The legend of the Darwin finches. Scientometrics, 99(3), 839–844. doi:10.1007/s11192-013-1200-8.CrossRefGoogle Scholar
  11. Marx, W., Bornmann, L., Barth, A., & Leydesdorff, L. (2014). Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). Journal of the Association for Information Science and Technology, 65(4), 751–764. doi:10.1002/asi.23089.CrossRefGoogle Scholar
  12. Opaluwa, Y., & Adejare, Q. (2013). Comparative analysis of five standard dry tropospheric delay models for estimation of dry tropospheric delay in GNSS positioning. American Journal of Geographic Information, 2, 121–131. doi:10.5923/j.ajgis.20130204.05.Google Scholar
  13. Parkinson, B., Stansell, T., Beard, R., & Gromov, K. (1995). A history of satellite navigation. Journal Institute Navigation, 42, 109–164.CrossRefMATHGoogle Scholar
  14. Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph Series, 15, 247–251. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/GM015p0247/summary
  15. Satirapod, C., & Chalermwattanachai, P. (2005). Impact of different tropospheric models on GPS baseline accuracy: Case study in Thailand. Journal of Global Positioning Systems, 4(1), 36–40. Retrieved from http://www.scirp.org/Journal/PaperInformation.aspx?paperID=292&JournalID=71
  16. Sci2 Team. (2009). Science of Science (Sci2) Tool. https://sci2.cns.iu.edu: Indiana University and SciTech Strategies.
  17. Smith, C. (2013). Google + is the fourth most-used smartphone App. Business Insider, http://www.businessinsider.com/google–smartphone–a.
  18. Smith, E., & Weintraub, S. (1953). The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 238, 1035–1037. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4051437

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Virginia Tech Applied Research CorporationArlingtonUSA

Personalised recommendations