Co-authorship proximity of A. M. Turing Award and John von Neumann Medal winners to the disciplinary boundaries of computer science

Abstract

It is shown that winners of the A. M. Turing Award or the John von Neumann Medal, both of which recognize achievement in computer science, are separated from some other A. M. Turing Award or John von Neumann Medal winner by at most 1.4 co-authorship steps on average, and from some cross-disciplinary broker, and hence from some discipline other than computer science, by at most 1.6 co-authorship steps on average. A. M. Turing Award and John von Neumann Medal recipients during this period are, therefore, on average closer in co-authorship terms to some other discipline that typical computer scientists are, on average, to each other.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    See http://amturing.acm.org/call_for_nominations.cfm; accessed Jan, 2015.

  2. 2.

    See http://www.ieee.org/about/awards/awards_guidelines.html; accessed Jan, 2015.

  3. 3.

    http://www.oakland.edu/enp/erdpaths/; accessed Jan, 2015.

  4. 4.

    http://amturing.acm.org/; accessed Nov–Dec, 2014.

  5. 5.

    http://www.ieee.org/about/awards/medals/vonneumann.html; accessed Jan. 2015.

  6. 6.

    http://dblp.uni-trier.de/db/; accessed Jan, 2015.

  7. 7.

    http://www.oakland.edu/enp/erdpaths/, accessed Jan, 2015.

References

  1. Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    MathSciNet  Article  MATH  Google Scholar 

  2. Bozorth, R. M., & Hamming, R. W. (1953). Measurement of magnetostriction in single crystals. Physical Review, 89, 865–869.

    Article  Google Scholar 

  3. Cabanac, G., Hubert, G., & Milard, B. (2015). Academic careers in computer science: Continuance and transience of lifetime co-authorships. Scientometrics, 102, 135–150.

    Article  Google Scholar 

  4. Chakraborty, T., Sikdar, S., Ganguly, N., & Mukherjee, A. (2014). Citation interactions among computer science fields: A quantitative route to the rise and fall of scientific research. Social Network Analysis and Mining, 4(1), 187. doi:10.1007/s13278-014-0187-3.

    Article  Google Scholar 

  5. Corbato, F. J., & Switendick, A. C. (1963). Integrals for diatomic molecular calculations. In B. Alder, S. Fernbach, & M. Rotenberg (Eds.), Methods in computational physics (Vol. 2). New York: Academic Press.

    Google Scholar 

  6. De Castro, R., & Grossman, J. W. (1999). Famous trails to Paul Erdős. Mathematical Intelligencer, 21(3), 51–53.

    MathSciNet  Article  MATH  Google Scholar 

  7. De Solla Price, D. (1963). Little science, big science. New York: Columbia University Press.

    Google Scholar 

  8. Elmacioglu, E., & Lee, D. (2005). On six degrees of separation in DBLP-DB and more. SIGMOD Record, 34(2), 33–40.

    Article  Google Scholar 

  9. Fields, C. (1996). Informatics for ubiquitous sequencing. Trends in Biotechnology, 14, 286–289.

    Article  Google Scholar 

  10. Fields, C. (2014). Some effects of the human genome project on the Erdős collaboration graph. Journal of Humanistic Mathematics, 4(2), 3–24.

    MathSciNet  Article  Google Scholar 

  11. Fields, C. (2015a). How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs. Scientometrics, 102, 1287–1306.

    Article  Google Scholar 

  12. Fields, C. (2015b). Close to the edge: Co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991–2010, to cross-disciplinary brokers. Scientometrics,. doi:10.1007/s11192-015-1526-5.

    Google Scholar 

  13. Franceschet, M. (2010). The role of conference publications in CS. Communications of the ACM, 53(12), 129–132.

    Article  Google Scholar 

  14. Freyne, J., Coyle, L., Smyth, B., & Cunningham, P. (2010). Relative status of journal and conference publications in computer science. Communications of the ACM, 53(11), 124–132.

    Article  Google Scholar 

  15. Ganapathiraju, M., Balakrishnan, N., Reddy, R., & Klein-Seetharaman, J. (2008). Transmembrane helix prediction using amino acid property features and latent semantic analysis. BMC Bioinformatics, 9(Suppl 1), S4. doi:10.1186/1471-2105-9-S1-S4.

    Article  Google Scholar 

  16. Glänzel, W., & Rousseau, R. (2005). Erdős distance and general collaboration distance. ISSI Newsletter, 1(2), 4–5.

    Google Scholar 

  17. Grossman, J. (2005). Patterns of research in mathematics.  Notices of the AMS, 52(1), 35–41.

  18. Jacobs, J. A., & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43–65.

    Article  Google Scholar 

  19. Kanehisa, M., Fickett, J. W., & Goad, W. B. (1984). A relational database system for the maintenance and verification of the Los Alamos sequence library. Nucleic Acids Research, 12, 149–158.

    Article  Google Scholar 

  20. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.

    Article  Google Scholar 

  21. Lederberg, J., Sutherland, G. L., Buchanan, B. G., Feigenbaum, E. A., Robertson, A. V., Duffield, A. M., & Djerassi, C. (1969). Applications of artificial intelligence for chemical inference. I. Number of possible organic compounds. Journal of the American Chemical Society, 91, 2973–2976.

    Article  Google Scholar 

  22. Lennard-Jones, J. E., Wilkes, M. V., & Bratt, J. B. (1939). The design of a small differential analyser. Mathematical Proceedings of the Cambridge Philosophical Society, 35, 485–493.

    MathSciNet  Article  Google Scholar 

  23. Meinhardt, H. (2009). Models for the generation and interpretation of gradients. Cold Spring Harbor Perspectives in Biology, 1, a001362.

    Article  Google Scholar 

  24. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98, 404–409.

    Article  MATH  Google Scholar 

  25. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–407.

    MathSciNet  Article  Google Scholar 

  26. Shortliffe, E. H., Axline, S. G., Buchanan, B. G., Merigan, T. C., & Cohen, N. (1973). An artificial intelligence program to advise physicians regarding antimicrobial therapy. Computers and Biomedical Research, 6, 544–560.

    Article  Google Scholar 

  27. Stormo, G. D., Schneider, T. D., Gold, L., & Ehrenfeucht, A. (1982). Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10, 2997–3011.

    Article  Google Scholar 

  28. Sugimoto, C. & Weingart, S. (2015). The kaleidoscope of disciplinarity. Preprint (http://ella.slis.indiana.edu/~sugimoto/preprints/KaleidoscopeOfDisciplinarity.pdf. Accessed Jan 2015).

  29. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B Biological Sciences, 237, 37–72.

    Article  Google Scholar 

  30. Xing, E. P., & Karp, R. M. (2001). CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, 17(Supp 1), S306–S315.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Appendix

Appendix

See Tables 1 and 2.

Table 1 Summary of the co-authorship results for A. M. Turing Award winners shown as subgraphs in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9
Table 2 Summary of the co-authorship results for John von Neumann Medal recipients who are not also A. M. Turing Award winners

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fields, C. Co-authorship proximity of A. M. Turing Award and John von Neumann Medal winners to the disciplinary boundaries of computer science. Scientometrics 104, 809–825 (2015). https://doi.org/10.1007/s11192-015-1575-9

Download citation

Keywords

  • Biomedical sciences
  • Computer science
  • Cross-disciplinary brokers
  • Erdős numbers
  • Graph centrality
  • Interdisciplinarity