Scientometrics

, Volume 104, Issue 3, pp 809–825 | Cite as

Co-authorship proximity of A. M. Turing Award and John von Neumann Medal winners to the disciplinary boundaries of computer science

Article

Abstract

It is shown that winners of the A. M. Turing Award or the John von Neumann Medal, both of which recognize achievement in computer science, are separated from some other A. M. Turing Award or John von Neumann Medal winner by at most 1.4 co-authorship steps on average, and from some cross-disciplinary broker, and hence from some discipline other than computer science, by at most 1.6 co-authorship steps on average. A. M. Turing Award and John von Neumann Medal recipients during this period are, therefore, on average closer in co-authorship terms to some other discipline that typical computer scientists are, on average, to each other.

Keywords

Biomedical sciences Computer science Cross-disciplinary brokers Erdős numbers Graph centrality Interdisciplinarity 

References

  1. Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.MathSciNetCrossRefMATHGoogle Scholar
  2. Bozorth, R. M., & Hamming, R. W. (1953). Measurement of magnetostriction in single crystals. Physical Review, 89, 865–869.CrossRefGoogle Scholar
  3. Cabanac, G., Hubert, G., & Milard, B. (2015). Academic careers in computer science: Continuance and transience of lifetime co-authorships. Scientometrics, 102, 135–150.CrossRefGoogle Scholar
  4. Chakraborty, T., Sikdar, S., Ganguly, N., & Mukherjee, A. (2014). Citation interactions among computer science fields: A quantitative route to the rise and fall of scientific research. Social Network Analysis and Mining, 4(1), 187. doi:10.1007/s13278-014-0187-3.CrossRefGoogle Scholar
  5. Corbato, F. J., & Switendick, A. C. (1963). Integrals for diatomic molecular calculations. In B. Alder, S. Fernbach, & M. Rotenberg (Eds.), Methods in computational physics (Vol. 2). New York: Academic Press.Google Scholar
  6. De Castro, R., & Grossman, J. W. (1999). Famous trails to Paul Erdős. Mathematical Intelligencer, 21(3), 51–53.MathSciNetCrossRefMATHGoogle Scholar
  7. De Solla Price, D. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  8. Elmacioglu, E., & Lee, D. (2005). On six degrees of separation in DBLP-DB and more. SIGMOD Record, 34(2), 33–40.CrossRefGoogle Scholar
  9. Fields, C. (1996). Informatics for ubiquitous sequencing. Trends in Biotechnology, 14, 286–289.CrossRefGoogle Scholar
  10. Fields, C. (2014). Some effects of the human genome project on the Erdős collaboration graph. Journal of Humanistic Mathematics, 4(2), 3–24.MathSciNetCrossRefGoogle Scholar
  11. Fields, C. (2015a). How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs. Scientometrics, 102, 1287–1306.CrossRefGoogle Scholar
  12. Fields, C. (2015b). Close to the edge: Co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991–2010, to cross-disciplinary brokers. Scientometrics,. doi:10.1007/s11192-015-1526-5.Google Scholar
  13. Franceschet, M. (2010). The role of conference publications in CS. Communications of the ACM, 53(12), 129–132.CrossRefGoogle Scholar
  14. Freyne, J., Coyle, L., Smyth, B., & Cunningham, P. (2010). Relative status of journal and conference publications in computer science. Communications of the ACM, 53(11), 124–132.CrossRefGoogle Scholar
  15. Ganapathiraju, M., Balakrishnan, N., Reddy, R., & Klein-Seetharaman, J. (2008). Transmembrane helix prediction using amino acid property features and latent semantic analysis. BMC Bioinformatics, 9(Suppl 1), S4. doi:10.1186/1471-2105-9-S1-S4.CrossRefGoogle Scholar
  16. Glänzel, W., & Rousseau, R. (2005). Erdős distance and general collaboration distance. ISSI Newsletter, 1(2), 4–5.Google Scholar
  17. Grossman, J. (2005). Patterns of research in mathematics.  Notices of the AMS, 52(1), 35–41.Google Scholar
  18. Jacobs, J. A., & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43–65.CrossRefGoogle Scholar
  19. Kanehisa, M., Fickett, J. W., & Goad, W. B. (1984). A relational database system for the maintenance and verification of the Los Alamos sequence library. Nucleic Acids Research, 12, 149–158.CrossRefGoogle Scholar
  20. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.CrossRefGoogle Scholar
  21. Lederberg, J., Sutherland, G. L., Buchanan, B. G., Feigenbaum, E. A., Robertson, A. V., Duffield, A. M., & Djerassi, C. (1969). Applications of artificial intelligence for chemical inference. I. Number of possible organic compounds. Journal of the American Chemical Society, 91, 2973–2976.CrossRefGoogle Scholar
  22. Lennard-Jones, J. E., Wilkes, M. V., & Bratt, J. B. (1939). The design of a small differential analyser. Mathematical Proceedings of the Cambridge Philosophical Society, 35, 485–493.MathSciNetCrossRefGoogle Scholar
  23. Meinhardt, H. (2009). Models for the generation and interpretation of gradients. Cold Spring Harbor Perspectives in Biology, 1, a001362.CrossRefGoogle Scholar
  24. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98, 404–409.CrossRefMATHGoogle Scholar
  25. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–407.MathSciNetCrossRefGoogle Scholar
  26. Shortliffe, E. H., Axline, S. G., Buchanan, B. G., Merigan, T. C., & Cohen, N. (1973). An artificial intelligence program to advise physicians regarding antimicrobial therapy. Computers and Biomedical Research, 6, 544–560.CrossRefGoogle Scholar
  27. Stormo, G. D., Schneider, T. D., Gold, L., & Ehrenfeucht, A. (1982). Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10, 2997–3011.CrossRefGoogle Scholar
  28. Sugimoto, C. & Weingart, S. (2015). The kaleidoscope of disciplinarity. Preprint (http://ella.slis.indiana.edu/~sugimoto/preprints/KaleidoscopeOfDisciplinarity.pdf. Accessed Jan 2015).
  29. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B Biological Sciences, 237, 37–72.CrossRefGoogle Scholar
  30. Xing, E. P., & Karp, R. M. (2001). CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, 17(Supp 1), S306–S315.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.SonomaUSA

Personalised recommendations