Combining OLAP and information networks for bibliographic data analysis: a survey

Abstract

In the context of scientometrics and bibliometrics, several research fields are dealing with bibliographic data. In this paper, we will explore how the combination of online analytical processing (OLAP) analysis and information networks could be an interesting issue. In Business Intelligence, OLAP is a technology supported by data warehousing systems. It provides tools for analyzing data according to multiple dimensions and multiple hierarchical levels. At the same time, several information networks (co-authors network, citations network, institutions network, etc.) can be built based on bibliographic databases. Originally, OLAP was introduced to analyze structured data. However, in this paper, we wonder if, by combining OLAP and information networks, we can provide a new way of analyzing bibliographic data. OLAP should be able to handle information networks and be also useful for monitoring, browsing and analyzing the content and the structure of bibliographic networks. The goal of this survey paper is to review previous work on OLAP and information networks dealing with bibliographic data. We also propose a comparison between traditional OLAP and OLAP on information networks and discuss the challenges OLAP faces regarding bibliographic networks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baid, A., Balmin, A., Hwang, H., Nijkamp, E., Rao, J., Reinwald, B., Simitsis, A., Sismanis, Y., & Ham, F. (2008). Dbpubs: Multidimensional exploration of database publications. In Proceedings of the 34th international conference on very large data bases (Vol. 1, pp. 1456–1459).

  2. Beheshti, S., Benatallah, B., & Motahari-Nezhad, H. (2012). A framework and a language for on-line analytical processing on graphs. In 13th international conference on web information systems engineering (WISE’12) (pp. 213–227).

  3. Cabanac, G. (2011). Accuracy of inter-researcher similarity measures based on topical and social clues. Scientometrics, 87(3), 597–620.

    Article  Google Scholar 

  4. Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and olap technology. ACM SIGMOD, 26(1), 65–74.

    Article  Google Scholar 

  5. Chen, C., Yan, X., Zhu, F., Han, J., & Yu, P. (2008). Graph olap: Towards online analytical processing on graphs. In IEEE international conference on data mining (TCDM’08) (pp. 103–112).

  6. Coscia, M., Giannotti, F., & Pensa, R. (2009). Social network analysis as knowledge discovery process: a case study on digital bibliography. In Proceedings of the 2009 international conference on advances in social networks analysis and mining (ASONAM ’09) (pp. 279–283).

  7. Deng, H., King, I., & Lyu, M. (2008). Formal models for expert finding on dblp bibliography data. In Proceedings of the 2008 eighth IEEE international conference on data mining (ICDM’08) (pp. 163–172).

  8. Diestel, R. (2000). Graph theory (2nd ed.). New York: Springer.

    Google Scholar 

  9. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining: Towards a unifying framework. In KDD Proceedings (pp. 82–88).

  10. Ferrara, A., & Salini, S. (2012). Ten challenges in modeling bibliographic data for bibliometric analysis. Scientometrics, 93(3), 765–785.

    Article  Google Scholar 

  11. Gupta, M., Aggarwal, C., Han, J., & Sun, Y. (2011). Evolutionary clustering and analysis of bibliographic networks. In International conference on advances in social networks analysis and mining (ASONAM’11) (pp. 63–70).

  12. Huang, Z., Yan, Y., Qiu, Y., & Qiao, S. (2009). Exploring emergent semantic communities from dblp bibliography database. In International conference on advances in social network analysis and mining (ASONAM’09) (pp. 219–224).

  13. Hudomalj, E., & Vidmar, G. (2003). Olap and bibliographic databases. Scientometrics, 58(3), 609–622.

    Article  Google Scholar 

  14. Hulme, E. W. (1923). Statistical bibliography in relation to the growth of modern civilization. London: Grafton.

    Google Scholar 

  15. Jakawat, W., Favre, C., & Loudcher, S. (2013). Olap on information networks: A new framework for dealing with bibliographic data. In 1st International Workshop on Social Business Intelligence (SoBI 2013), collocated with the East-European Conference on Advances in Databases and Information Systems (ADBIS) (pp. 361–370).

  16. Jin, X., Han, J., Cao, L., Luo, J., Ding, B., & Lin, C.X. (2010). Visual cube and on-line analytical processing of images. In 19th ACM international conference on Information and knowledge management (CIKM’10).

  17. Kampgen, B., & Harth, A. (2011). Transforming statistical linked data for use in olap systems. In 7th international conference on semantic systems (I-SEMANTICS’11) (pp. 33–40).

  18. Kaya, M., & Alhajj, R. (2014). Development of multidimensional academic information networks with a novel data cube based modeling method. Information Sciences, 265, 211–224.

    Article  Google Scholar 

  19. Klink, S., Ley, M., Rabbidge, E., Reuther, P., Walter, B., & Weber, A. (2004). Visualising and mining digital bibliographic data. In INFORMATIK (pp. 193–197).

  20. Klink, S., Reuther, P., Weber, A., Walter, B., & Ley, M. (2006). Analysing social networks within bibliographical data. In Proceedings of the 17th international conference on database and expert systems applications (DEXA’06) (pp. 234–243).

  21. Morfonios, K., & Koutrika, G. (2008). Olap cubes for social searches: Standing on the shoulders of giants? In International workshop on the web and databases (WebDB).

  22. Muhlenbach, F., & Lallich, S. (2010). Discovering research communities by clustering bibliographical data. In IEEE WIC ACM international conference on web intelligence and intelligent agent technology (WI-IAT’10) (Vol. 1, pp. 500–507).

  23. Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167–256.

  24. Pham, M.C., & Klamma, R. (2010). The structure of the computer science knowledge network. In International conference on advances in social networks analysis and mining (ASONAM’10) (pp. 17–24).

  25. Pritchard, A. (1969). Statistical bibliography: An interim bibliography. London: North-Western Polytechnic, School of Librarianship.

    Google Scholar 

  26. Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P., & Li, H. (2011). Efficient topological olap on information networks. In Proceedings of the 16th international conference on database systems for advanced applications (DASFAA’11) (Vol. 1, pp. 389–403).

  27. Seki K., Qin, H., & Uehara, K. (2010). Impact and prospect of social bookmarks for bibliographic information retrieval. In Proceedings of the 10th annual joint conference on digital libraries (JCDL ’10) (pp. 357–360).

  28. Tian, Y., Hankins, R., & Patel, L. (2008). Efficient aggregation for graph summarization. In ACM SIGMOD international conference on management of data (SIGMOD’08) (pp. 567–580).

  29. Trifonova, T. G. (2011). Warehousing and olap analysis of bibliographic data. Intelligent Information Management, 3, 190–197.

    Article  Google Scholar 

  30. Van Raan, A. F. J. (1997). Scientometrics: State-of-the-art. Scientometrics, 38(1), 205–218.

    Article  Google Scholar 

  31. Varlamis, I., & Tsatsaronis, G. (2011). Visualizing bibliographic databases as graphs and mining potential research synergies. In Proceedings of the 2011 international conference on advances in social networks analysis and mining (ASONAM ’11) (pp. 53–60).

  32. Wu, L., Sumbaly, R., Riccomini, C., Koo, G., Kim, H., Kreps, J., et al. (2012). Avatara: Olap for webscale analytics products. Proceedings of the VLDB Endowment, 5(12), 1874–1877.

    Article  Google Scholar 

  33. Yin, M., Wu, B., & Zeng, Z. (2012). Hmgraph olap: a novel framework for multi-dimensional heterogeneous network analysis. In 15th international workshop on data warehousing and OLAP (DOLAP’12) (pp. 137–144).

  34. Zaiane, O. R., Chen, J., & Goebel, R. (2009). Mining research communities in bibliographical data. Advances in Web Mining and Web Usage Analysis, 5439, 59–76.

    Article  Google Scholar 

  35. Zhao, P., Li, X., Xin, D., & Han, J. (2011). Graph cube: On warehousing and olap multidimensional networks. In ACM SIGMOD international conference on management of data (SIGMOD’11) (pp. 853–864).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabine Loudcher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loudcher, S., Jakawat, W., Morales, E.P.S. et al. Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103, 471–487 (2015). https://doi.org/10.1007/s11192-015-1539-0

Download citation

Keywords

  • OLAP
  • Information networks
  • Bibliographic data