How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs

Abstract

Cycles that cross two or more boundaries between disciplines in the co-authorship graph for all of science are used to set upper limits on the number of co-authored papers required to cross 15 disciplines or subdisciplines ranging from macroeconomics to neurology. The upper limits obtained range from one (discrete mathematics, macroeconomics and nuclear physics) to six (neuroscience). The 15 disciplines or subdisciplines examined form a “small world” with an average separation of only 2.0 co-authorship links. It is conjectured that the high-productivity, high average degree centers of all scientific disciplines form a small world, and therefore that the diameter of the co-authorship graph of all of science is only slightly larger than the average diameter of the co-authorship graphs of its subdisciplines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams, M. D., Kerlavage, A. R., Kelley, J., Gocayne, J., Fields, C., Fraser, C., et al. (1994). A model for high-throughput automated DNA sequencing and analysis core facilities. Nature, 368, 474–475.

    Article  Google Scholar 

  2. Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., et al., (85 co-authors) (1995). Initial assessent of human gene diversty and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature, 377(Suppl), 3–174.

  3. Alon, N., Karp, R. M., Peleg, D., & West, D. (1995). A graph-theoretic game and its application to the k-server problem. SIAM Journal Computation, 24, 78–100.

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Asodi, V., Cantor, C., Kasif, S., & Rachlin, J. (2006). Multi-node graphs: A framework for multiplexed biological assays. Journal Computational Biology, 13, 1659–1672.

    Article  MathSciNet  Google Scholar 

  5. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  6. Batagelj, V. & Mrvar, A. (2000). Some analyses of Erdős collaboration graph. Social Networks, 22, 173–186.

    Article  MathSciNet  Google Scholar 

  7. Bienstock, D., Chung, F. R. K., Fredman, M. L., Schäffer, A. A., Shor, P. W., & Suri, S. (1991). A note on finding a strict saddlepoint. American Mathematical Monthly, 98, 418–419.

    Article  MATH  MathSciNet  Google Scholar 

  8. Borgatti, S. P. & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28, 466–484.

    Article  Google Scholar 

  9. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.

    Article  Google Scholar 

  10. Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science. Annual Review of Information Science and Technology, 41, 537–607.

    Article  Google Scholar 

  11. Branscom, E., Slezak, T., Pae, R., Galas, D., Carrano, A. V., & Waterman, M. (1990). Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries. Genomics, 8, 351–366.

    Article  Google Scholar 

  12. Burks, C., Engle, M. L., Forrest, S., Parsons, R. J., Soderlund, C. A., & Stolarz, P. E. (1994). Stochastic optimization tools for genome sequence assembly. In M. D. Adams, C. Fields, & J. C. Venter (Eds.), Automated DNA Sequencing and Analysis (pp. 249–259). New York: Academic Press.

    Google Scholar 

  13. Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J., & Strogatz, S. (2001). Are randomly grown graphs really random? Physical Review E, 64, 041902.

    Article  Google Scholar 

  14. Callaway, D. S. & Perelson, A. S. (2002). HIV-1 infection and low steady state viral loads. Bulletin of Mathematical Biology, 64, 29–64.

    Article  Google Scholar 

  15. Cho, S., Moody, T. D., Fernandino, F., Mumford, J. A., Poldrack, R. A., Cannon, T. D., et al. (2010). Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cerebral Cortex, 20, 524–533.

    Article  Google Scholar 

  16. Chowla, S. & Erdős, P. (1951). A theorem on the distribution of values of L-functions. Journal Indian Mathematical Society, 15, 11–18.

    MATH  Google Scholar 

  17. Chowla, S. & Hawkins, D. (1962). Asymptotic expansion of some series involving the Reimann zeta function. Journal Indian Mathematical Society, 26, 115–124.

    MATH  MathSciNet  Google Scholar 

  18. Chung, F. R. K., Liu, L., Dewey, T. G., & Galas, D. J. (2003). Duplication models for biological networks. Journal Computational Biology, 10, 677–687.

    Article  Google Scholar 

  19. Collins, F. S. & Watson, J. D. (2003). Genetic discrimination: Time to act. Science, 302, 745.

    Article  Google Scholar 

  20. Cox, G. N., Kusch, M., & Edgar, R. S. (1981). Cuticle of Caenorhabditis elegans: Its isolation and partial characterization. Journal Cell Biology, 90, 7–17.

    Article  Google Scholar 

  21. Craddock, T. J. A., Tuszynski, J. A., Chopra, D., Casey, N., Goldstein, L. E., Hameroff, S. R., et al. (2012). The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One, 7, e33552.

    Article  Google Scholar 

  22. Crane, D. (1972). Invisible Colleges; Diffusion of Knowledge in Scientific Communities. Chicago: University of Chicago Press.

    Google Scholar 

  23. Crick, F. R. C. & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.

    Article  Google Scholar 

  24. De Castro, R. & Grossman, J. W. (1999). Famous trails to Paul Erdős. Mathematical Intelligencer, 21(3), 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  25. Diestel, R. (2010). Graph Theory (4th ed.). Berlin: Springer.

    Google Scholar 

  26. Dietrich, E. & Fields, C. (1996). The role of the frame problem in Fodor’s modularity thesis: A case study in rationalist cognitive science. In K. M. Ford & Z. Pylyshyn (Eds.), The Robot’s Dilemma Revisited (pp. 9–24). Norwood, NJ: Ablex.

    Google Scholar 

  27. Edgar, R. S., Feynman, R. P., Klein, S., Lielausis, I., & Steinberg, C. M. (1962). Mapping experiments with r mutants of bacteriophage T4D. Genetics, 47(2), 179–186.

    Google Scholar 

  28. Ehrenfeucht, A., Faber, V., & Kierstead, H. A. (1984). A new method of proving theorems on chromatic index. Discrete Mathematics, 52, 159–164.

    Article  MATH  MathSciNet  Google Scholar 

  29. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., et al. (1963). Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symposia on Quantitative Biology, 28, 375–394.

    Article  Google Scholar 

  30. Erdős, P., Faber, V., & Larson, J. (1981). Sets of natural numbers of positive density and cylindric set algebras of dimension 2. Algebra Universalis, 12, 81–92.

    Article  MathSciNet  Google Scholar 

  31. Erdős, P. & Kleitman, D. J. (1968). On coloring graphs to maximize the proportion of multicolored k-edges. Journal Combinatorial Theory, 5, 164–169.

    Article  Google Scholar 

  32. Erdős, P. & Odlyzko, A. M. (1979). On the density of odd integers of the form \((p - 1)2^{-n}\) and related questions. Journal Number Theory, 11, 257–263.

    Article  MathSciNet  Google Scholar 

  33. Feynman, R. P. & Gell-Mann, M. (1958). Theory of the Fermi interaction. Physical Review, 109, 193–198.

    Article  MATH  MathSciNet  Google Scholar 

  34. Feynman, R. P., Metropolis, N., & Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Physical Review, 75, 1561–1573.

    Article  MATH  Google Scholar 

  35. Fields, C. A., Kraushaar, J. J., Ristinen, R. A., & Samuelson, L. E. (1978). High-spin states above 3.5 MeV in \(^{91}\)Nb. Nuclear Physics, 326, 55–64.

    Article  Google Scholar 

  36. Fields, C., Coombs, M., & Hartley, R. (1988). MGR: An architecture for problem solving in unstructured task environments. In Z. Ras & L. Saitta (Eds.), Methodologies for Intelligent Systems, 3 (pp. 40–49). Amsterdam: Elsevier.

    Google Scholar 

  37. Fields, C. & Soderlund, C. (1990). gm: A practical tool for automating DNA sequence analysis. Computer Applications in the Biosciences, 6, 263–270.

    Google Scholar 

  38. Fields, C. (2014). Some effects of the Human Genome Project on the Erdős collaboration graph. Journal Humanistic Mathematics 4, 3–24.

  39. Forrest, S., Javornik, B., Smith, R. E., & Perelson, A. S. (1993). Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1, 191–211.

    Article  Google Scholar 

  40. Frisch, O. R. & Wheeler, J. A. (2009). The discovery of fission. Physics Today, 20(11), 43–54.

    Article  Google Scholar 

  41. Gell-Mann, M. & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Review D, 47, 3345–3382.

    Article  MathSciNet  Google Scholar 

  42. Gell-Mann, M. & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2, 44–52.

    Article  MATH  MathSciNet  Google Scholar 

  43. Gentner, D. & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist, 52, 32–34.

    Article  Google Scholar 

  44. Goh, W. C., Rosen, C., Sodroski, J., Ho, D. D., & Haseltine, W. A. (1986). Identification of a protein encoded by the trans activator gene \(tatIII\) of human T-cell lymphotropic retrovirus type III. Journal Virology, 59, 181–184.

    Google Scholar 

  45. Goldhaber, M. & Teller, E. (1948). On nuclear dipole vibrations. Physical Review, 74, 1046–1049.

  46. Griggs, J. R., Hanlon, P., Odlyzko, A. M., & Waterman, M. S. (1990). On the number of alignments of k sequences. Graphs and Combinatorics, 6, 133–146.

    Article  MATH  MathSciNet  Google Scholar 

  47. Grossman, J. W. (2005). Patterns of research in mathematics. Notices of the AMS, 52(1), 35–41.

    MATH  MathSciNet  Google Scholar 

  48. Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J. H., et al. (2014). Quantum enigma machines and the locking capacity of a quantum channel. Physical Review X, 4, 011016.

    Article  Google Scholar 

  49. Hameroff, S. & Penrose, R. (1996). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation, 40, 453–480.

    Article  Google Scholar 

  50. Hartle, J. B. & Hawking, S. W. (1983). Wave function of the universe. Physical Review D, 28, 2960–2975.

    Article  MathSciNet  Google Scholar 

  51. Hartley, R. T. & Barnden, J. A. (1997). Semantic networks: Visualizations of Knowledge. Trends in Cognitive Sciences, 1, 169–175.

    Article  Google Scholar 

  52. Hayden, P., Leung, D., Shor, P. W., & Winter, A. (2004). Randomizing quantum states: Constructions and applications. Communications in Mathematical Physics, 250, 371–391.

    Article  MATH  MathSciNet  Google Scholar 

  53. Hawking, S. W., & Penrose, R. (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London A, 314, 529–548.

    Article  MATH  MathSciNet  Google Scholar 

  54. Hawkins, D. & Simon, H. A. (1949). Note: Some conditions of macroeconomic stability. Econometrica, 17, 245–248.

    Article  Google Scholar 

  55. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.

    Article  Google Scholar 

  56. Hopcroft, J. E. & Karp, R. M. (1973). An \(n^{5/2} \) algorithm for maximum matchings in bipartite graphs. SIAM Journal of Computation, 2, 225–231.

    Article  MATH  MathSciNet  Google Scholar 

  57. Jacobs, J. A. (2013). In Defense of Disciplines. Chicago: University of Illinois Press.

    Google Scholar 

  58. Jacobs, J. A. & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43–65.

    Article  Google Scholar 

  59. Klavans, R. & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.

    Article  Google Scholar 

  60. Kraushaar, J. J. & Goldhaber, M. (1953). Direction and polarization correlations of successive gamma-rays. Physical Review, 89, 1081–1089.

    Article  Google Scholar 

  61. Kuhn, H. W. (2004). Introduction. In J. von Neumann & O. Morgenstern (Eds.), Theory of games and economic behavior, sixtieth anniversary. Princeton: Princeton University Press, pp. vii–xiv.

    Google Scholar 

  62. Lambiotte, R. & Panzarasa, P. (2009). Communities, knowledge creation and information diffusion. Journal of Informetrics, 3(3), 180–190.

    Article  Google Scholar 

  63. Lander, E. S. & Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics, 2, 231–239.

    Article  Google Scholar 

  64. Landherr, A., Friedl, B., & Heidemann, J. (2010). A critical review of centrality measures in complex networks. Business Information Systems Engineering, 6, 371–385.

    Article  Google Scholar 

  65. Lehky, S. R., Sejnowski, T. J., & Desimone, R. (1992). Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. Journal of Neuroscience, 12, 3568–3581.

    Google Scholar 

  66. Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., et al. (2003). Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. NeuroImage, 20, 1518–1530.

    Article  Google Scholar 

  67. Luria, S. & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511.

    Google Scholar 

  68. Mali, F., Kronegger, L., Doreian, P., & Ferligoj, A. (2012). Dynamic scientific co-authorship networks. In A. Scharnhorst, K. Börner, & P. van den Besselaar (Eds.), Models of Science Dynamics (pp. 195–232). Berlin: Springer.

    Google Scholar 

  69. Markman, A. B. & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.

    Article  Google Scholar 

  70. Markman, A. B. & Dietrich, E. (2000). In defense of representation. Cognitive Psychology, 40, 138–171.

    Article  Google Scholar 

  71. Martin-Gallardo, A., McCombie, W. R., Gocayne, J. D., et al., (17 co-authors) (1992). Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genetics, 1, 34–39.

  72. McCombie, W. R., Martin-Gallardo, A., Gocayne, J. D., et al., (21 co-authors) (1992). Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genetics, 1, 348–353.

  73. Meitner, L. & Delbrück, M. (1935). Der Aufbau Der Atomkerne: Natürliche und Künstliche Kernumwandlungen. (The Structure of Atomic Nuclei: Natural and Artificial Nuclear Transformations). Berlin: Springer.

  74. Meitner, L. & Frisch, O. (1939). Disintegration of Uranium by neutrons: A new type of nuclear reaction. Nature, 143, 239–240.

    Article  MATH  Google Scholar 

  75. Meitner, L. & Kösters, H. (1933). Über die Streuung kurzwelliger \(\gamma \)-Strahlen (On the scattering of short-wave \(\gamma \)-rays). Zeitschrift für Physik, 84(3–4), 137–144.

    Article  Google Scholar 

  76. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238.

    Article  Google Scholar 

  77. Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Correra-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solano, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58, 2167–2179.

    Article  Google Scholar 

  78. Mount, S. M., Burks, C., Herts, G., Stormo, G. D., White, O., & Fields, C. (1992). Splicing signals in Drosophila: Intron size, information content, and consensus sequences. Nucleic Acids Research, 20, 4255–4262.

    Article  Google Scholar 

  79. Murray, M. N., Hansma, H. G., Bezanilla, M., Sano, T., Ogletree, D. F., Kolbe, W., et al. (1993). Atomic force microscopy of biochemically tagged DNA. Proceedings of the National Academy of Sciences USA, 90, 3811–3814.

    Article  Google Scholar 

  80. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98, 404–409.

    Article  MATH  Google Scholar 

  81. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences USA, 101, 5200–5205.

    Article  Google Scholar 

  82. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences USA, 103, 8577–8582.

    Article  Google Scholar 

  83. Newman, M. E. J., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of computer viruses. Physical Review E, 66, 035101.

    Article  Google Scholar 

  84. Pachter, L., Batzoglou, S., Spitkovsky, V. I., Banks, E., Lander, E. S., Kleitman, D. J., et al. (1999). A dictionary-based approach for gene annotation. Journal of Computational Biology, 6, 419–430.

    Article  Google Scholar 

  85. Porter, A. L. & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81, 719–745.

    Article  Google Scholar 

  86. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the Association for Information Science and Technology, 61, 1871–1887.

    Article  Google Scholar 

  87. Roberts, L., Davenport, R. J., Pennisi, E., & Marshall, E. (2001). A history of the Human Genome Project. Science, 291, 1195.

    Article  Google Scholar 

  88. Rosen, D. R., Siddique, T., & Patterson, D., et al. (33 co-authors), (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.

  89. Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241, 1299–1306.

    Article  Google Scholar 

  90. Simon, H. A., Valdés-Pérez, R. E., & Sleeman, D. H. (1997). Scientific discovery and simplicity of method. Artificial Intelligence, 91, 177–181.

    Article  Google Scholar 

  91. Sleeman, D. H. & Hendley, R. J. (1979). ACE: A system which analyses complex explanations. International Journal of Man-Machine Studies, 11, 125–144.

    Article  Google Scholar 

  92. Smith, C. L., Lawrance, S. K., Gillespie, G. A., Cantor, C. R., Weissman, S. M., & Collins, F. S. (1987). Strategies for mapping and cloning macroregions of mammalian genomes. Methods in Enzymology, 151, 461–489.

    Article  Google Scholar 

  93. Stormo, G. D., Schneider, T. D., Gold, L., & Ehrenfeucht, A. (1982). Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10, 2997–3011.

    Article  Google Scholar 

  94. van Houten, J., van Vuren, H. G., Le Pair, C., & Dijkhuis, G. (1983). Migration of physicists to other academic disciplines: Situation in The Netherlands. Scientometrics, 5, 257–267.

    Article  Google Scholar 

  95. Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? The influence of collaboration networks on citation practices. PLoS One, 7, e33339.

    Article  Google Scholar 

  96. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Santos, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.

    Article  Google Scholar 

  97. Waterman, M., Uberbacher, E., Spengler, S., Smith, F. R., Slezak, T., Robbins, R., et al. (1994). Genome informatics I: Community databases. Journal of Computational Biology, 1, 173–190.

    Article  Google Scholar 

  98. Watson, J. D. & Cook-Deegan, R. M. (1991). Origins of the Human Genome Project. FASEB Journal, 5, 8–11.

    Google Scholar 

  99. Watson, J. D. & Crick, F. R. C. (1953). Molecular structure of nucleic acids. Nature, 171, 737–738.

    Article  Google Scholar 

  100. Wheeler, J. A. & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17(2–3), 157–181.

    Article  Google Scholar 

  101. Wiberg, J. S., Dirksen, M. L., Epstein, R. H., Luria, S. E., & Buchanan, J. M. (1962). Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proceedings of the National Academy of Sciences USA, 48, 293–302.

    Article  Google Scholar 

  102. Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.

    Article  Google Scholar 

  103. Zhang, L., Barnden, J. A., Hendley, R. J., & Wallington, A. M. (2006). Exploitation in affect detection in improvisational e-drama. Lecture Notes in Computer Science, 4133, 68–79.

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to two anonymous referees for their helpful questions and comments on earlier versions of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fields, C. How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs. Scientometrics 102, 1287–1306 (2015). https://doi.org/10.1007/s11192-014-1468-3

Download citation

Keywords

  • Cross-displinary brokers
  • Field mobility
  • Graph centrality
  • Graph diameter
  • Nobel laureates
  • Preferential attachment
  • Small-world networks