Scientometrics

, Volume 102, Issue 2, pp 1287–1306 | Cite as

How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs

Article

Abstract

Cycles that cross two or more boundaries between disciplines in the co-authorship graph for all of science are used to set upper limits on the number of co-authored papers required to cross 15 disciplines or subdisciplines ranging from macroeconomics to neurology. The upper limits obtained range from one (discrete mathematics, macroeconomics and nuclear physics) to six (neuroscience). The 15 disciplines or subdisciplines examined form a “small world” with an average separation of only 2.0 co-authorship links. It is conjectured that the high-productivity, high average degree centers of all scientific disciplines form a small world, and therefore that the diameter of the co-authorship graph of all of science is only slightly larger than the average diameter of the co-authorship graphs of its subdisciplines.

Keywords

Cross-displinary brokers Field mobility Graph centrality Graph diameter Nobel laureates Preferential attachment Small-world networks 

References

  1. Adams, M. D., Kerlavage, A. R., Kelley, J., Gocayne, J., Fields, C., Fraser, C., et al. (1994). A model for high-throughput automated DNA sequencing and analysis core facilities. Nature, 368, 474–475.CrossRefGoogle Scholar
  2. Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., et al., (85 co-authors) (1995). Initial assessent of human gene diversty and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature, 377(Suppl), 3–174.Google Scholar
  3. Alon, N., Karp, R. M., Peleg, D., & West, D. (1995). A graph-theoretic game and its application to the k-server problem. SIAM Journal Computation, 24, 78–100.CrossRefMATHMathSciNetGoogle Scholar
  4. Alon, N., Asodi, V., Cantor, C., Kasif, S., & Rachlin, J. (2006). Multi-node graphs: A framework for multiplexed biological assays. Journal Computational Biology, 13, 1659–1672.CrossRefMathSciNetGoogle Scholar
  5. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.CrossRefMATHMathSciNetGoogle Scholar
  6. Batagelj, V. & Mrvar, A. (2000). Some analyses of Erdős collaboration graph. Social Networks, 22, 173–186.CrossRefMathSciNetGoogle Scholar
  7. Bienstock, D., Chung, F. R. K., Fredman, M. L., Schäffer, A. A., Shor, P. W., & Suri, S. (1991). A note on finding a strict saddlepoint. American Mathematical Monthly, 98, 418–419.CrossRefMATHMathSciNetGoogle Scholar
  8. Borgatti, S. P. & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28, 466–484.CrossRefGoogle Scholar
  9. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.CrossRefGoogle Scholar
  10. Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science. Annual Review of Information Science and Technology, 41, 537–607.CrossRefGoogle Scholar
  11. Branscom, E., Slezak, T., Pae, R., Galas, D., Carrano, A. V., & Waterman, M. (1990). Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries. Genomics, 8, 351–366.CrossRefGoogle Scholar
  12. Burks, C., Engle, M. L., Forrest, S., Parsons, R. J., Soderlund, C. A., & Stolarz, P. E. (1994). Stochastic optimization tools for genome sequence assembly. In M. D. Adams, C. Fields, & J. C. Venter (Eds.), Automated DNA Sequencing and Analysis (pp. 249–259). New York: Academic Press.Google Scholar
  13. Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J., & Strogatz, S. (2001). Are randomly grown graphs really random? Physical Review E, 64, 041902.CrossRefGoogle Scholar
  14. Callaway, D. S. & Perelson, A. S. (2002). HIV-1 infection and low steady state viral loads. Bulletin of Mathematical Biology, 64, 29–64.CrossRefGoogle Scholar
  15. Cho, S., Moody, T. D., Fernandino, F., Mumford, J. A., Poldrack, R. A., Cannon, T. D., et al. (2010). Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cerebral Cortex, 20, 524–533.CrossRefGoogle Scholar
  16. Chowla, S. & Erdős, P. (1951). A theorem on the distribution of values of L-functions. Journal Indian Mathematical Society, 15, 11–18.MATHGoogle Scholar
  17. Chowla, S. & Hawkins, D. (1962). Asymptotic expansion of some series involving the Reimann zeta function. Journal Indian Mathematical Society, 26, 115–124.MATHMathSciNetGoogle Scholar
  18. Chung, F. R. K., Liu, L., Dewey, T. G., & Galas, D. J. (2003). Duplication models for biological networks. Journal Computational Biology, 10, 677–687.CrossRefGoogle Scholar
  19. Collins, F. S. & Watson, J. D. (2003). Genetic discrimination: Time to act. Science, 302, 745.CrossRefGoogle Scholar
  20. Cox, G. N., Kusch, M., & Edgar, R. S. (1981). Cuticle of Caenorhabditis elegans: Its isolation and partial characterization. Journal Cell Biology, 90, 7–17.CrossRefGoogle Scholar
  21. Craddock, T. J. A., Tuszynski, J. A., Chopra, D., Casey, N., Goldstein, L. E., Hameroff, S. R., et al. (2012). The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One, 7, e33552.CrossRefGoogle Scholar
  22. Crane, D. (1972). Invisible Colleges; Diffusion of Knowledge in Scientific Communities. Chicago: University of Chicago Press.Google Scholar
  23. Crick, F. R. C. & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.CrossRefGoogle Scholar
  24. De Castro, R. & Grossman, J. W. (1999). Famous trails to Paul Erdős. Mathematical Intelligencer, 21(3), 51–63.CrossRefMATHMathSciNetGoogle Scholar
  25. Diestel, R. (2010). Graph Theory (4th ed.). Berlin: Springer.CrossRefGoogle Scholar
  26. Dietrich, E. & Fields, C. (1996). The role of the frame problem in Fodor’s modularity thesis: A case study in rationalist cognitive science. In K. M. Ford & Z. Pylyshyn (Eds.), The Robot’s Dilemma Revisited (pp. 9–24). Norwood, NJ: Ablex.Google Scholar
  27. Edgar, R. S., Feynman, R. P., Klein, S., Lielausis, I., & Steinberg, C. M. (1962). Mapping experiments with r mutants of bacteriophage T4D. Genetics, 47(2), 179–186.Google Scholar
  28. Ehrenfeucht, A., Faber, V., & Kierstead, H. A. (1984). A new method of proving theorems on chromatic index. Discrete Mathematics, 52, 159–164.CrossRefMATHMathSciNetGoogle Scholar
  29. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., et al. (1963). Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symposia on Quantitative Biology, 28, 375–394.CrossRefGoogle Scholar
  30. Erdős, P., Faber, V., & Larson, J. (1981). Sets of natural numbers of positive density and cylindric set algebras of dimension 2. Algebra Universalis, 12, 81–92.CrossRefMathSciNetGoogle Scholar
  31. Erdős, P. & Kleitman, D. J. (1968). On coloring graphs to maximize the proportion of multicolored k-edges. Journal Combinatorial Theory, 5, 164–169.CrossRefGoogle Scholar
  32. Erdős, P. & Odlyzko, A. M. (1979). On the density of odd integers of the form \((p - 1)2^{-n}\) and related questions. Journal Number Theory, 11, 257–263.CrossRefMathSciNetGoogle Scholar
  33. Feynman, R. P. & Gell-Mann, M. (1958). Theory of the Fermi interaction. Physical Review, 109, 193–198.CrossRefMATHMathSciNetGoogle Scholar
  34. Feynman, R. P., Metropolis, N., & Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Physical Review, 75, 1561–1573.CrossRefMATHGoogle Scholar
  35. Fields, C. A., Kraushaar, J. J., Ristinen, R. A., & Samuelson, L. E. (1978). High-spin states above 3.5 MeV in \(^{91}\)Nb. Nuclear Physics, 326, 55–64.CrossRefGoogle Scholar
  36. Fields, C., Coombs, M., & Hartley, R. (1988). MGR: An architecture for problem solving in unstructured task environments. In Z. Ras & L. Saitta (Eds.), Methodologies for Intelligent Systems, 3 (pp. 40–49). Amsterdam: Elsevier.Google Scholar
  37. Fields, C. & Soderlund, C. (1990). gm: A practical tool for automating DNA sequence analysis. Computer Applications in the Biosciences, 6, 263–270.Google Scholar
  38. Fields, C. (2014). Some effects of the Human Genome Project on the Erdős collaboration graph. Journal Humanistic Mathematics 4, 3–24.Google Scholar
  39. Forrest, S., Javornik, B., Smith, R. E., & Perelson, A. S. (1993). Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1, 191–211.CrossRefGoogle Scholar
  40. Frisch, O. R. & Wheeler, J. A. (2009). The discovery of fission. Physics Today, 20(11), 43–54.CrossRefGoogle Scholar
  41. Gell-Mann, M. & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Review D, 47, 3345–3382.CrossRefMathSciNetGoogle Scholar
  42. Gell-Mann, M. & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2, 44–52.CrossRefMATHMathSciNetGoogle Scholar
  43. Gentner, D. & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist, 52, 32–34.CrossRefGoogle Scholar
  44. Goh, W. C., Rosen, C., Sodroski, J., Ho, D. D., & Haseltine, W. A. (1986). Identification of a protein encoded by the trans activator gene \(tatIII\) of human T-cell lymphotropic retrovirus type III. Journal Virology, 59, 181–184.Google Scholar
  45. Goldhaber, M. & Teller, E. (1948). On nuclear dipole vibrations. Physical Review, 74, 1046–1049.Google Scholar
  46. Griggs, J. R., Hanlon, P., Odlyzko, A. M., & Waterman, M. S. (1990). On the number of alignments of k sequences. Graphs and Combinatorics, 6, 133–146.CrossRefMATHMathSciNetGoogle Scholar
  47. Grossman, J. W. (2005). Patterns of research in mathematics. Notices of the AMS, 52(1), 35–41.MATHMathSciNetGoogle Scholar
  48. Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J. H., et al. (2014). Quantum enigma machines and the locking capacity of a quantum channel. Physical Review X, 4, 011016.CrossRefGoogle Scholar
  49. Hameroff, S. & Penrose, R. (1996). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation, 40, 453–480.CrossRefGoogle Scholar
  50. Hartle, J. B. & Hawking, S. W. (1983). Wave function of the universe. Physical Review D, 28, 2960–2975.CrossRefMathSciNetGoogle Scholar
  51. Hartley, R. T. & Barnden, J. A. (1997). Semantic networks: Visualizations of Knowledge. Trends in Cognitive Sciences, 1, 169–175.CrossRefGoogle Scholar
  52. Hayden, P., Leung, D., Shor, P. W., & Winter, A. (2004). Randomizing quantum states: Constructions and applications. Communications in Mathematical Physics, 250, 371–391.CrossRefMATHMathSciNetGoogle Scholar
  53. Hawking, S. W., & Penrose, R. (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London A, 314, 529–548.CrossRefMATHMathSciNetGoogle Scholar
  54. Hawkins, D. & Simon, H. A. (1949). Note: Some conditions of macroeconomic stability. Econometrica, 17, 245–248.CrossRefGoogle Scholar
  55. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.CrossRefGoogle Scholar
  56. Hopcroft, J. E. & Karp, R. M. (1973). An \(n^{5/2} \) algorithm for maximum matchings in bipartite graphs. SIAM Journal of Computation, 2, 225–231.CrossRefMATHMathSciNetGoogle Scholar
  57. Jacobs, J. A. (2013). In Defense of Disciplines. Chicago: University of Illinois Press.CrossRefGoogle Scholar
  58. Jacobs, J. A. & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43–65.CrossRefGoogle Scholar
  59. Klavans, R. & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.CrossRefGoogle Scholar
  60. Kraushaar, J. J. & Goldhaber, M. (1953). Direction and polarization correlations of successive gamma-rays. Physical Review, 89, 1081–1089.CrossRefGoogle Scholar
  61. Kuhn, H. W. (2004). Introduction. In J. von Neumann & O. Morgenstern (Eds.), Theory of games and economic behavior, sixtieth anniversary. Princeton: Princeton University Press, pp. vii–xiv.Google Scholar
  62. Lambiotte, R. & Panzarasa, P. (2009). Communities, knowledge creation and information diffusion. Journal of Informetrics, 3(3), 180–190.CrossRefGoogle Scholar
  63. Lander, E. S. & Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics, 2, 231–239.CrossRefGoogle Scholar
  64. Landherr, A., Friedl, B., & Heidemann, J. (2010). A critical review of centrality measures in complex networks. Business Information Systems Engineering, 6, 371–385.CrossRefGoogle Scholar
  65. Lehky, S. R., Sejnowski, T. J., & Desimone, R. (1992). Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. Journal of Neuroscience, 12, 3568–3581.Google Scholar
  66. Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., et al. (2003). Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. NeuroImage, 20, 1518–1530.CrossRefGoogle Scholar
  67. Luria, S. & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511.Google Scholar
  68. Mali, F., Kronegger, L., Doreian, P., & Ferligoj, A. (2012). Dynamic scientific co-authorship networks. In A. Scharnhorst, K. Börner, & P. van den Besselaar (Eds.), Models of Science Dynamics (pp. 195–232). Berlin: Springer.CrossRefGoogle Scholar
  69. Markman, A. B. & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.CrossRefGoogle Scholar
  70. Markman, A. B. & Dietrich, E. (2000). In defense of representation. Cognitive Psychology, 40, 138–171.CrossRefGoogle Scholar
  71. Martin-Gallardo, A., McCombie, W. R., Gocayne, J. D., et al., (17 co-authors) (1992). Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genetics, 1, 34–39.Google Scholar
  72. McCombie, W. R., Martin-Gallardo, A., Gocayne, J. D., et al., (21 co-authors) (1992). Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genetics, 1, 348–353.Google Scholar
  73. Meitner, L. & Delbrück, M. (1935). Der Aufbau Der Atomkerne: Natürliche und Künstliche Kernumwandlungen. (The Structure of Atomic Nuclei: Natural and Artificial Nuclear Transformations). Berlin: Springer.Google Scholar
  74. Meitner, L. & Frisch, O. (1939). Disintegration of Uranium by neutrons: A new type of nuclear reaction. Nature, 143, 239–240.CrossRefMATHGoogle Scholar
  75. Meitner, L. & Kösters, H. (1933). Über die Streuung kurzwelliger \(\gamma \)-Strahlen (On the scattering of short-wave \(\gamma \)-rays). Zeitschrift für Physik, 84(3–4), 137–144.CrossRefGoogle Scholar
  76. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238.CrossRefGoogle Scholar
  77. Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Correra-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solano, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58, 2167–2179.CrossRefGoogle Scholar
  78. Mount, S. M., Burks, C., Herts, G., Stormo, G. D., White, O., & Fields, C. (1992). Splicing signals in Drosophila: Intron size, information content, and consensus sequences. Nucleic Acids Research, 20, 4255–4262.CrossRefGoogle Scholar
  79. Murray, M. N., Hansma, H. G., Bezanilla, M., Sano, T., Ogletree, D. F., Kolbe, W., et al. (1993). Atomic force microscopy of biochemically tagged DNA. Proceedings of the National Academy of Sciences USA, 90, 3811–3814.CrossRefGoogle Scholar
  80. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98, 404–409.CrossRefMATHGoogle Scholar
  81. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences USA, 101, 5200–5205.CrossRefGoogle Scholar
  82. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences USA, 103, 8577–8582.CrossRefGoogle Scholar
  83. Newman, M. E. J., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of computer viruses. Physical Review E, 66, 035101.CrossRefGoogle Scholar
  84. Pachter, L., Batzoglou, S., Spitkovsky, V. I., Banks, E., Lander, E. S., Kleitman, D. J., et al. (1999). A dictionary-based approach for gene annotation. Journal of Computational Biology, 6, 419–430.CrossRefGoogle Scholar
  85. Porter, A. L. & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81, 719–745.CrossRefGoogle Scholar
  86. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the Association for Information Science and Technology, 61, 1871–1887.CrossRefGoogle Scholar
  87. Roberts, L., Davenport, R. J., Pennisi, E., & Marshall, E. (2001). A history of the Human Genome Project. Science, 291, 1195.CrossRefGoogle Scholar
  88. Rosen, D. R., Siddique, T., & Patterson, D., et al. (33 co-authors), (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.Google Scholar
  89. Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241, 1299–1306.CrossRefGoogle Scholar
  90. Simon, H. A., Valdés-Pérez, R. E., & Sleeman, D. H. (1997). Scientific discovery and simplicity of method. Artificial Intelligence, 91, 177–181.CrossRefGoogle Scholar
  91. Sleeman, D. H. & Hendley, R. J. (1979). ACE: A system which analyses complex explanations. International Journal of Man-Machine Studies, 11, 125–144.CrossRefGoogle Scholar
  92. Smith, C. L., Lawrance, S. K., Gillespie, G. A., Cantor, C. R., Weissman, S. M., & Collins, F. S. (1987). Strategies for mapping and cloning macroregions of mammalian genomes. Methods in Enzymology, 151, 461–489.CrossRefGoogle Scholar
  93. Stormo, G. D., Schneider, T. D., Gold, L., & Ehrenfeucht, A. (1982). Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10, 2997–3011.CrossRefGoogle Scholar
  94. van Houten, J., van Vuren, H. G., Le Pair, C., & Dijkhuis, G. (1983). Migration of physicists to other academic disciplines: Situation in The Netherlands. Scientometrics, 5, 257–267.CrossRefGoogle Scholar
  95. Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? The influence of collaboration networks on citation practices. PLoS One, 7, e33339.CrossRefGoogle Scholar
  96. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Santos, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.CrossRefGoogle Scholar
  97. Waterman, M., Uberbacher, E., Spengler, S., Smith, F. R., Slezak, T., Robbins, R., et al. (1994). Genome informatics I: Community databases. Journal of Computational Biology, 1, 173–190.CrossRefGoogle Scholar
  98. Watson, J. D. & Cook-Deegan, R. M. (1991). Origins of the Human Genome Project. FASEB Journal, 5, 8–11.Google Scholar
  99. Watson, J. D. & Crick, F. R. C. (1953). Molecular structure of nucleic acids. Nature, 171, 737–738.CrossRefGoogle Scholar
  100. Wheeler, J. A. & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17(2–3), 157–181.CrossRefGoogle Scholar
  101. Wiberg, J. S., Dirksen, M. L., Epstein, R. H., Luria, S. E., & Buchanan, J. M. (1962). Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proceedings of the National Academy of Sciences USA, 48, 293–302.CrossRefGoogle Scholar
  102. Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.CrossRefGoogle Scholar
  103. Zhang, L., Barnden, J. A., Hendley, R. J., & Wallington, A. M. (2006). Exploitation in affect detection in improvisational e-drama. Lecture Notes in Computer Science, 4133, 68–79.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.SonomaUSA

Personalised recommendations