Skip to main content

Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology

Abstract

This study explores interdisciplinarity evolution of Biochemistry and Molecular Biology (BMB) over a one-hundred-year period on several fronts, namely: change in interdisciplinarity, identification of core disciplines, disciplinary emergence, and potential discipline detection, in order to assess the evolution of interdisciplinarity over time. Science overlay maps and a StreamGraph were used to visualize interdisciplinary evolution. Our study confirms that interdisciplinarity evolves mainly from neighbouring fields to distant cognitive areas and provides evidence of an increasing tendency of BMB researchers to cite literature from other disciplines. Additionally, from our results, we can see that the top potential interdisciplinary relations belong to distant disciplines of BMB; their share of references is small, but is increasing markedly. On the whole, these results confirm the dynamic nature of interdisciplinary relations, and suggest that current scientific problems are increasingly addressed using knowledge from a wide variety of disciplines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    http://www.vosviewer.com/.

  2. 2.

    Due to the fact that BMB accounts for a large proportion of the references it makes the StreamGraph displays all core discipline except for BMB as it would occupy a large space and squeeze other core disciplines’ space in the map.

  3. 3.

    Molecular Biology could be regarded as being part of Biochemistry. After the publication of the double-helix structure of DNA in 1953, research concerning DNA in Biochemistry is usually called Molecular Biology.

References

  1. Abramo, G., D’Angelo, C. A., & Di Costa, F. (2012). Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications. Journal of the American Society for Information Science and Technology, 63(11), 2206–2222.

    Article  Google Scholar 

  2. Adams, J., Jackson, L., & Marshall, S. (2007). Bibliometric analysis of interdisciplinary research. Report to the Higher Education Funding Council for England. http://webarchive.nationalarchives.gov.uk/20100202100434/http:/hefce.ac.uk/pubs/rdreports/2007/rd19_07/.

  3. Berg, J., & Wagner-Döbler, R. (1996). A multidimensional analysis of scientific dynamics. Part I. Case studies of mathematical logic in the 20th century. Scientometrics, 35(3), 321–346.

    Article  Google Scholar 

  4. Bordons, M., Zulueta, M. A., Romero, F., & Barrigón, S. (1999). Measuring interdisciplinary collaboration within a university: The effects of the multidisciplinary research programme. Scientometrics, 46(3), 383–398.

    Article  Google Scholar 

  5. Buter, R. K., Noyons, E. C., & van Raan, A. F. J. (2011). Searching for converging research using field to field citations. Scientometrics, 86(2), 325–338.

    Article  Google Scholar 

  6. Byron, L., & Wattenberg, M. (2008). Stacked Graphs: Geometry and aesthetics. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1245–1252.

    Article  Google Scholar 

  7. Carley, S., & Porter, A. L. (2012). A forward diversity index. Scientometrics, 90(2), 407–427.

    Article  Google Scholar 

  8. Chang, Y. W., & Huang, M. H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33.

    Article  Google Scholar 

  9. Garner, J., Porter, A. L., Borrego, M., Tran, E., & Teutonico, R. (2013). Facilitating social and natural science cross-disciplinarity: Assessing the human and social dynamics program. Research Evaluation, 22(2), 134–144.

    Google Scholar 

  10. Hamilton, K. S. (2003). Subfield and level classification of journals. CHI No. 2012-R, CHI Research Inc.

  11. Havre, S., Hetzler, B., & Nowell, L. (2000). ThemeRiver: Visualizing theme changes over time. In: Proceedings of the IEEE Symposium on Information Vizualization 2000, IEEE Computer Society: 115.

  12. Hinze, S. (1994). Bibliographical cartography of an emerging interdisciplinary discipline: The case of bioelectronics. Scientometrics, 29(3), 353–376.

    Article  Google Scholar 

  13. Jahn, T., Bergmann, M., & Keil, F. (2012). Transdisciplinarity: Between mainstreaming and marginalization. Ecological Economics, 79, 1–10.

    Article  Google Scholar 

  14. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.

    Article  Google Scholar 

  15. Kohler, R. E. (1982). From medical chemistry to biochemistry: The making of a biomedical discipline. New York: Cambridge University Press.

    Book  Google Scholar 

  16. Larivière, V., Archambault, É., & Gingras, Y. (2008). Long-term variations in the aging of scientific literature: From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59(2), 288–296.

    Article  Google Scholar 

  17. Larivière, V., & Gingras, Y. (2014). Measuring interdisciplinarity. In B. Cronin & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 187–200). Cambridge: Mass: MIT Press.

    Google Scholar 

  18. Le Pair, C. (1980). Switching between academic disciplines in universities in the Netherlands. Scientometrics, 2(3), 177–191.

    Article  Google Scholar 

  19. Lee, E. S., McDonald, D. W., Anderson, N., & Tarczy-Hornoch, P. (2009). Incorporating collaboratory concepts into informatics in support of translational interdisciplinary biomedical research. International Journal of Medical Informatics, 78(1), 10–21.

    Article  Google Scholar 

  20. Levitt, J. M., & Thelwall, M. (2008). Is multidisciplinary research more highly cited? A macrolevel study. Journal of the American Society for Information Science and Technology, 59(12), 1973–1984.

    Article  Google Scholar 

  21. Levitt, J. M., Thelwall, M., & Oppenheim, C. (2011). Variations between subjects in the extent to which the social sciences have become more interdisciplinary. Journal of the American Society for Information Science and Technology, 62(6), 1118–1129.

    Article  Google Scholar 

  22. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593.

    Article  Google Scholar 

  23. Morillo, F., Bordons, M., & Gómez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.

    Article  Google Scholar 

  24. Porter, A. L., & Chubin, D. E. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3–4), 161–176.

    Google Scholar 

  25. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  26. Qiu, L. (1992). A study of interdisciplinary research collaboration. Research Evaluation, 2(3), 169–175.

    Article  Google Scholar 

  27. Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.

    Article  Google Scholar 

  28. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  29. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  30. Rinia, E. J., van Leeuwen, T. N., Bruins, E. E. W., van Vuren, H. G., & van Raan, A. F. J. (2002a). Measuring knowledge transfer between fields of science. Scientometrics, 54(3), 347–362.

    Article  Google Scholar 

  31. Rinia, E. J., van Leeuwen, T. N., & van Raan, A. F. J. (2002b). Impact measures of interdisciplinary research in physics. Scientometrics, 53(2), 241–248.

    Article  Google Scholar 

  32. Rosvall, M., & Bergstrom, C. T. (2010). Mapping change in large networks. PLoS ONE, 5(1), e8694.

    Article  Google Scholar 

  33. Smajgl, A., & Ward, J. (2013). A framework to bridge science and policy in complex decision making arenas. Futures, 52, 52–58.

    Article  Google Scholar 

  34. Sugimoto, C. R., Ni, C. Q., Russell, T. G., & Bychowski, B. (2011). Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in library and information science. Journal of the American Society for Information Science and Technology, 62(9), 1808–1828.

    Article  Google Scholar 

  35. Tomov, D. T., & Mutafov, H. G. (1996). Comparative indicators of interdisciplinarity in modern science. Scientometrics, 37(2), 267–278.

    Article  Google Scholar 

  36. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  37. van Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.

    Article  Google Scholar 

  38. van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9(3), 183–187.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clément Arsenault.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Arsenault, C., Gingras, Y. et al. Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology. Scientometrics 102, 1307–1323 (2015). https://doi.org/10.1007/s11192-014-1457-6

Download citation

Keywords

  • Interdisciplinarity
  • Bibliometrics
  • References
  • Information visualisation