, Volume 102, Issue 2, pp 1307–1323 | Cite as

Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology

  • Shiji Chen
  • Clément ArsenaultEmail author
  • Yves Gingras
  • Vincent Larivière


This study explores interdisciplinarity evolution of Biochemistry and Molecular Biology (BMB) over a one-hundred-year period on several fronts, namely: change in interdisciplinarity, identification of core disciplines, disciplinary emergence, and potential discipline detection, in order to assess the evolution of interdisciplinarity over time. Science overlay maps and a StreamGraph were used to visualize interdisciplinary evolution. Our study confirms that interdisciplinarity evolves mainly from neighbouring fields to distant cognitive areas and provides evidence of an increasing tendency of BMB researchers to cite literature from other disciplines. Additionally, from our results, we can see that the top potential interdisciplinary relations belong to distant disciplines of BMB; their share of references is small, but is increasing markedly. On the whole, these results confirm the dynamic nature of interdisciplinary relations, and suggest that current scientific problems are increasingly addressed using knowledge from a wide variety of disciplines.


Interdisciplinarity Bibliometrics References Information visualisation 


  1. Abramo, G., D’Angelo, C. A., & Di Costa, F. (2012). Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications. Journal of the American Society for Information Science and Technology, 63(11), 2206–2222.CrossRefGoogle Scholar
  2. Adams, J., Jackson, L., & Marshall, S. (2007). Bibliometric analysis of interdisciplinary research. Report to the Higher Education Funding Council for England.
  3. Berg, J., & Wagner-Döbler, R. (1996). A multidimensional analysis of scientific dynamics. Part I. Case studies of mathematical logic in the 20th century. Scientometrics, 35(3), 321–346.CrossRefGoogle Scholar
  4. Bordons, M., Zulueta, M. A., Romero, F., & Barrigón, S. (1999). Measuring interdisciplinary collaboration within a university: The effects of the multidisciplinary research programme. Scientometrics, 46(3), 383–398.CrossRefGoogle Scholar
  5. Buter, R. K., Noyons, E. C., & van Raan, A. F. J. (2011). Searching for converging research using field to field citations. Scientometrics, 86(2), 325–338.CrossRefGoogle Scholar
  6. Byron, L., & Wattenberg, M. (2008). Stacked Graphs: Geometry and aesthetics. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1245–1252.CrossRefGoogle Scholar
  7. Carley, S., & Porter, A. L. (2012). A forward diversity index. Scientometrics, 90(2), 407–427.CrossRefGoogle Scholar
  8. Chang, Y. W., & Huang, M. H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33.CrossRefGoogle Scholar
  9. Garner, J., Porter, A. L., Borrego, M., Tran, E., & Teutonico, R. (2013). Facilitating social and natural science cross-disciplinarity: Assessing the human and social dynamics program. Research Evaluation, 22(2), 134–144.Google Scholar
  10. Hamilton, K. S. (2003). Subfield and level classification of journals. CHI No. 2012-R, CHI Research Inc.Google Scholar
  11. Havre, S., Hetzler, B., & Nowell, L. (2000). ThemeRiver: Visualizing theme changes over time. In: Proceedings of the IEEE Symposium on Information Vizualization 2000, IEEE Computer Society: 115.Google Scholar
  12. Hinze, S. (1994). Bibliographical cartography of an emerging interdisciplinary discipline: The case of bioelectronics. Scientometrics, 29(3), 353–376.CrossRefGoogle Scholar
  13. Jahn, T., Bergmann, M., & Keil, F. (2012). Transdisciplinarity: Between mainstreaming and marginalization. Ecological Economics, 79, 1–10.CrossRefGoogle Scholar
  14. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.CrossRefGoogle Scholar
  15. Kohler, R. E. (1982). From medical chemistry to biochemistry: The making of a biomedical discipline. New York: Cambridge University Press.CrossRefGoogle Scholar
  16. Larivière, V., Archambault, É., & Gingras, Y. (2008). Long-term variations in the aging of scientific literature: From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59(2), 288–296.CrossRefGoogle Scholar
  17. Larivière, V., & Gingras, Y. (2014). Measuring interdisciplinarity. In B. Cronin & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 187–200). Cambridge: Mass: MIT Press.Google Scholar
  18. Le Pair, C. (1980). Switching between academic disciplines in universities in the Netherlands. Scientometrics, 2(3), 177–191.CrossRefGoogle Scholar
  19. Lee, E. S., McDonald, D. W., Anderson, N., & Tarczy-Hornoch, P. (2009). Incorporating collaboratory concepts into informatics in support of translational interdisciplinary biomedical research. International Journal of Medical Informatics, 78(1), 10–21.CrossRefGoogle Scholar
  20. Levitt, J. M., & Thelwall, M. (2008). Is multidisciplinary research more highly cited? A macrolevel study. Journal of the American Society for Information Science and Technology, 59(12), 1973–1984.CrossRefGoogle Scholar
  21. Levitt, J. M., Thelwall, M., & Oppenheim, C. (2011). Variations between subjects in the extent to which the social sciences have become more interdisciplinary. Journal of the American Society for Information Science and Technology, 62(6), 1118–1129.CrossRefGoogle Scholar
  22. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593.CrossRefGoogle Scholar
  23. Morillo, F., Bordons, M., & Gómez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.CrossRefGoogle Scholar
  24. Porter, A. L., & Chubin, D. E. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3–4), 161–176.Google Scholar
  25. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  26. Qiu, L. (1992). A study of interdisciplinary research collaboration. Research Evaluation, 2(3), 169–175.CrossRefGoogle Scholar
  27. Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.CrossRefGoogle Scholar
  28. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.CrossRefGoogle Scholar
  29. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.CrossRefGoogle Scholar
  30. Rinia, E. J., van Leeuwen, T. N., Bruins, E. E. W., van Vuren, H. G., & van Raan, A. F. J. (2002a). Measuring knowledge transfer between fields of science. Scientometrics, 54(3), 347–362.CrossRefGoogle Scholar
  31. Rinia, E. J., van Leeuwen, T. N., & van Raan, A. F. J. (2002b). Impact measures of interdisciplinary research in physics. Scientometrics, 53(2), 241–248.CrossRefGoogle Scholar
  32. Rosvall, M., & Bergstrom, C. T. (2010). Mapping change in large networks. PLoS ONE, 5(1), e8694.CrossRefGoogle Scholar
  33. Smajgl, A., & Ward, J. (2013). A framework to bridge science and policy in complex decision making arenas. Futures, 52, 52–58.CrossRefGoogle Scholar
  34. Sugimoto, C. R., Ni, C. Q., Russell, T. G., & Bychowski, B. (2011). Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in library and information science. Journal of the American Society for Information Science and Technology, 62(9), 1808–1828.CrossRefGoogle Scholar
  35. Tomov, D. T., & Mutafov, H. G. (1996). Comparative indicators of interdisciplinarity in modern science. Scientometrics, 37(2), 267–278.CrossRefGoogle Scholar
  36. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  37. van Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.CrossRefGoogle Scholar
  38. van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9(3), 183–187.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Shiji Chen
    • 1
    • 2
  • Clément Arsenault
    • 2
    Email author
  • Yves Gingras
    • 3
  • Vincent Larivière
    • 2
    • 3
  1. 1.Library of China Agricultural UniversityBeijingChina
  2. 2.École de bibliothéconomie et des sciences de l’informationUniversité de MontréalMontréalCanada
  3. 3.Observatoire des Sciences et des Technologies (OST), Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST)Université du Québec à MontréalMontréalCanada

Personalised recommendations