Size of web domains and interlinking behavior of higher education institutions in Europe

Abstract

The aim of this paper is to empirically test whether interlinking patterns between higher education institutions (HEIs) conform to a document model, where links are motivated by webpage content, or a social relationship model, where they are markers of underlying social relationships between HEIs. To this aim, we analyzed a sample of approximately 400 European HEIs, using the number of pages on their web domains and the total number of links sent and received; in addition we test whether these two characteristics are associated with organizational size, reputation, and the volume of teaching and research activities. Our main findings are as follows: first, the number of webpages of HEI websites is strongly associated with their size, and to a lesser extent, with the volume of their educational activities, research orientation, and reputation; differences between European countries are rather limited, supporting the insight that the academic Web has reached a mature stage. Second, the distribution of connectivity (as measured by the total degree of HEI’s) follows a lognormal distribution typical of social networks between organizations, while counts of weblinks can be predicted with good precision from organizational characteristics. HEIs with larger websites tend to send and receive more links, but the effect is rather limited and does not fundamentally modify the resulting network structure. We conclude that aggregated counts of weblinks between pairs of HEIs are not significantly affected by the web policies of HEIs and thus can be considered as reasonably robust measures. Furthermore, interlinking should be considered as proxies of social relationships between HEIs rather than as reputational measures of the content published on their websites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Following countries were covered: Austria, Bulgaria, Switzerland, Germany, Estonia, Spain, Finland, Hungary, Ireland, Italy, Lithuania, Latvia, Netherlands, Norway, Poland, Romania, Sweden, Slovenia, Slovakia and UK.

References

  1. Adamic, L. A., & Huberman, B. A. (2000). Power-law distribution of the world wide web. Science, 287(5461), 2115.

    Article  Google Scholar 

  2. Aguillo, I., Ortega, J. L., & Fernández, M. (2008). Webometric Ranking of World Universities: Introduction, Methodology, and Future Developments. Higher Education in Europe, 33(2), 233–244.

    Google Scholar 

  3. Aguillo, I. F., Ortega, J. L., Fernández, M., & Utrilla, A. M. (2010). Indicators for a webometric ranking of open access repositories. Scientometrics, 82(3), 477–486.

    Article  Google Scholar 

  4. Almind, T. C., & Ingwersen, P. (1997). Infometric analyses on the world wide web: Methodological approaches to ‘webometrics’. Journal of Documentation, 53(4), 404–426.

    Article  Google Scholar 

  5. Astani, M. (2013). A decade of changes in university website design. Issues in Information Systems, 14(1), 189–196.

    Google Scholar 

  6. Barabási, A., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1), 69–77.

    Article  Google Scholar 

  7. Bar-Ilan, J. (2005). What do we know about links and linking? A framework for studying links in academic environments. Information Processing and Management, 41(3), 973–986.

    Article  Google Scholar 

  8. Bar-Ilan, J. (2009). Infometrics at the beginning of the 21st century: A review. Journal of Infometrics, 2(1), 1–52.

    Article  Google Scholar 

  9. Callahan, E. (2005). Cultural similarities and differences in the design of university web sites. Journal of Computer-Mediated Communication, 11(1), 239–273.

    Article  Google Scholar 

  10. Callahan, E., & Herring, S. C. (2012). Language choice on university websites: Longitudinal trends. International Journal of Communication, 6, 322–355.

    Google Scholar 

  11. Cameron, A. C., & Trivedi, P. K. (1998). Regression analysis of count data. Cambridge: Cambridge University Press.

  12. Capocci, A., Servedio, V. D., Colaiori, F., Buriol, L. S., Donato, D., Leonardi, S., et al. (2006). Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia. Physical Review E, 74(3), 036116.

    Article  Google Scholar 

  13. Cattani, G., Ferriani, S., Negro, G., & Perretti, F. (2008). The structure of consensus: Network ties, legitimation, and exit rates of U.S. Feature Film Producer Organizations. Administrative Science Quarterly, 53(1), 145–182.

    Article  Google Scholar 

  14. Daraganova, G., Pattison, P., Koskinen, J., Mitchell, B., Bill, A., Watts, M., et al. (2012). Networks and geography: Modelling community network structures as the outcome of both spatial and network processes. Social Networks, 34(1), 6–17.

    Article  Google Scholar 

  15. De Stefano, D., Fuccella, V., Vitale, M. P., & Zaccarin, S. (2013). The use of different data sources in the analysis of co-authorship networks and scientific performance. Social Networks, 35(3), 370–381.

    Article  Google Scholar 

  16. Gaudeul, A., & Giannetti, C. (2013). The role of reciprocation in social network formation, with an application to Live Journal. Social Networks, 35(3), 317–330.

    Article  Google Scholar 

  17. Glänzel, W., & Schubert, A. (2005). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Dordrecht: Kluwer Academic Publications.

    Google Scholar 

  18. Gonzalez-Bailon, S. (2009). Opening the black box of link formation: Social factors underlying the structure of the Web. Social Networks, 31(4), 271–280.

    Article  Google Scholar 

  19. Heller-Schuh, B., Barber, M., Henriques, L., Paier, M., Pontikakis, D., Scherngell, T., et al. (2011). Analysis of networks in European Framework Programmes (1984–2006). Luxembourg: Publications Office of the European Union.

    Google Scholar 

  20. Ijiri, Y., & Simon, H. A. (1964). Business firm growth and size. The American Economic Review, 54(2), 77–89.

    Google Scholar 

  21. Katz, J. S., & Cothey, V. (2006). Web indicators for complex innovation systems. Research Evaluation, 15(2), 85–95.

    Article  Google Scholar 

  22. Kretschmer, H., Kretschmer, U., & Kretschmer, T. (2007). Reflection of co-authorship networks in the Web: Web hyperlinks versus Web visibility rates. Scientometrics, 70(2), 519–540.

    Article  Google Scholar 

  23. Lee, M., & Park, H. W. (2012). Exploring the web visibility of world-class universities. Scientometrics, 90, 201–218.

    Article  Google Scholar 

  24. Lepori, B., Barberio, V., Seeber, M., & Aguillo, I. (2013). Core–periphery structures in national higher education systems: A cross-country analysis using interlinking data. Journal of Infometrics, 7(3), 622–634.

    Article  Google Scholar 

  25. Lepori, B., & Bonaccorsi, A. (2013). Towards an European census of higher education institutions. Design, methodological and comparability issues. Minerva, 51(3), 271–293.

    Article  Google Scholar 

  26. Más-Bleda, A., & Aguillo, I. F. (2013). Can a personal website be useful as an information source to assess individual scientists? The case of European highly cited researchers. Scientometrics, 96(1), 51–67.

    Article  Google Scholar 

  27. Ortega, J. L., Aguillo, I., Cothey, V., & Scharnhorst, A. (2008). Maps of the academic web in the European Higher Education Area: An exploration of visual web indicators. Scientometrics, 74(2), 295–308.

    Article  Google Scholar 

  28. Owen-Smith, J., & Powell, W. W. (2008). Networks and institutions. In R. Greenwood, C. Oliver, K. Shalin, & R. Suddaby (Eds.), The SAGE handbook of organizational institutionalism (pp. 594–621). London: SAGE Publications Ltd.

    Google Scholar 

  29. Payne, N., & Thelwall, M. (2007). A longitudinal study of academic webs: Growth and stabilization. Scientometrics, 71(3), 523–539.

    Article  Google Scholar 

  30. Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E. J., & Giles, C. L. (2002). Winners don’t take all: Characterizing the competition for links on the web. Proceedings of the National Academy of Sciences, 99(8), 5207–5211.

    Article  MATH  Google Scholar 

  31. Peterson, K. (2013). Academic web site design and academic templates: Where does the library fit in? Information Technology and Libraries, 25(4), 217–221.

    Article  Google Scholar 

  32. Rivera, M. T., Soderstrom, S. B., & Uzzi, B. (2010). Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annual Review of Sociology, 36, 91–115.

    Article  Google Scholar 

  33. Seeber, M., Lepori, B., Lomi, A., Aguillo, I., & Barberio, V. (2012). Factors affecting weblink connections between European higher education institutions. Journal of Infometrics, 6(3), 435–447.

    Article  Google Scholar 

  34. Thelwall, M. (2002a). A research and institutional size based model for national university web site interlinking. Journal of Documentation, 58(6), 683–694.

    Article  Google Scholar 

  35. Thelwall, M. (2002b). Evidence for the existence of geographic trends in university web site interlinking. Journal of Documentation, 58(5), 563–574.

    Article  Google Scholar 

  36. Thelwall, M. (2006). Interpreting social science link analysis research: A theoretical framework. Journal of the American Society for Information Science and Technology, 57(1), 60–68.

    Article  Google Scholar 

  37. Thelwall, M. (2012a). A history of webometrics. Bulletin of the American Society for Information Science and Technology, 38(6), 18–23.

    Google Scholar 

  38. Thelwall, M. (2012b). Journal impact evaluation: A webometric perspective. Scientometrics, 92(2), 429–441.

    Article  Google Scholar 

  39. Thelwall, M., Binns, R., Harries, G., Page-Kennedy, T., Price, L., & Wilkinson, D. (2002). European Union associated university websites. Scientometrics, 53(1), 95–111.

    Article  Google Scholar 

  40. Thelwall, M., & Sud, P. (2011). A comparison of methods for collecting web citation data for academic organizations. Journal of the American Society for Information Science and Technology, 62(8), 1488–1497.

    Article  Google Scholar 

  41. Thelwall, M., Tang, R., & Price, E. (2003). Linguistic patterns of academic web use in Western Europe. Scientometrics, 56(3), 417–432.

    Article  Google Scholar 

  42. van Raan, A. F. J. (2007). Bibliometric statistical properties of the 100 largest European universities: Prevalent scaling rules in the science system. Eprint:arXiv:0704.0889.

  43. Vaughan, L., Kipp, M., & Gao, Y. (2007). Why are websites co-linked? The case of Canadian Universities. Scientometrics, 72(1), 81–92.

    Google Scholar 

  44. Vaughan, L., & Thelwall, M. (2005). A modeling approach to uncover hyperlink patterns: The case of Canadian universities. Information Processing and Management, 41(2), 347–359.

    Article  Google Scholar 

  45. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.

    Article  Google Scholar 

  46. Wilkinson, D., Harries, G., Thelwall, M., & Price, L. (2003). Motivations for academic web site interlinking: Evidence for the Web as a novel source of information on informal scholarly communication. Journal of Information Science, 29(1), 49–56.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benedetto Lepori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lepori, B., Aguillo, I.F. & Seeber, M. Size of web domains and interlinking behavior of higher education institutions in Europe. Scientometrics 100, 497–518 (2014). https://doi.org/10.1007/s11192-014-1242-6

Download citation

Keywords

  • Social relationships
  • Document network
  • Weblinks
  • Higher education

MSC

  • 62J12
  • 62P20
  • 91B74

JEL Classification

  • D85