Scientometrics

, Volume 101, Issue 2, pp 1027–1042 | Cite as

Disciplinary differences in Twitter scholarly communication

Article

Abstract

This paper investigates disciplinary differences in how researchers use the microblogging site Twitter. Tweets from selected researchers in ten disciplines (astrophysics, biochemistry, digital humanities, economics, history of science, cheminformatics, cognitive science, drug discovery, social network analysis, and sociology) were collected and analyzed both statistically and qualitatively. The researchers tended to share more links and retweet more than the average Twitter users in earlier research and there were clear disciplinary differences in how they used Twitter. Biochemists retweeted substantially more than researchers in the other disciplines. Researchers in digital humanities and cognitive science used Twitter more for conversations, while researchers in economics shared the most links. Finally, whilst researchers in biochemistry, astrophysics, cheminformatics and digital humanities seemed to use Twitter for scholarly communication, scientific use of Twitter in economics, sociology and history of science appeared to be marginal.

Keywords

Scholarly communication Twitter Disciplinary differences Webometrics Altmetrics 

References

  1. Ash, T. G. (2011). Tunisia’s revolution isn’t a product of Twitter or Wikileaks. But they do help. Guardian. Retrieved March 13, 2011 from http://www.guardian.co.uk/commentisfree/2011/jan/19/tunisia-revolution-twitter-facebook
  2. Borgman, C. L. (2000). Scholarly communication and bibliometrics revisited. In B. Cronin & H. B. Atkins (Eds.), The web of knowledge—A festschrift in honor of Eugene Garfield (pp. 143–162). Medford: Information Today Inc.Google Scholar
  3. Borgman, C., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual Review of Information Science and Technology, 36(1), 2–72.CrossRefGoogle Scholar
  4. Boyd, D., Golder, S., & Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In Proceedings of the 43rd Hawaii international conference on system sciences 2010. Retrieved March 1, 2011 from http://www.danah.org/papers/TweetTweetRetweet.pdf
  5. Choi, S., Park, J., & Park, H. W. (2012). Using social media data to explore communication processes within South Korean online innovation communities. Scientometrics, 90, 43–56.CrossRefGoogle Scholar
  6. Cole, J. R. (2000). A short history of the use of citations as a measure of the impact of scientific and scholarly work. In B. Cronin & H. B. Atkins (Eds.), The web of knowledge—A festschrift in honor of Eugene Garfield (pp. 281–300). Medford: Information Today Inc.Google Scholar
  7. Earle, P. S., Bowden, D. C., & Guy, M. (2011). Twitter earthquake detection: Earthquake monitoring in a social world. Annals of Geophysics, 54(6), 708–715.Google Scholar
  8. Ediger, D., Jiang, K., Riedy, J., Bader, D. A., Corley, C., Farber, R., & Reynolds, W. N. (2010). Massive social network analysis: Mining Twitter for social good. In Proceedings of 39th international conference on parallel processing. Retrieved March 1, 2011 from http://www.cc.gatech.edu/~jriedy/paper-copies/ICPP10-GraphCT.pdf
  9. Eysenbach, G. (2011). Can tweets predict citations? Metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact. Journal of Medical Internet Research, 13, 4. Retrieved on February 9, 2013, from http://www.jmir.org/2011/4/e123/
  10. Fleiss, J. L. (1981). Statistical methods for rates and proportions (2nd ed.). New York: John Wiley. ISBN 0-471-26370-2.Google Scholar
  11. Forkosh-Baruch, A., & Hershkovitz, A. (2011). A case study of Israeli higher-education institutes sharing scholarly information with the community via social networks. Internet and Higher Education, 15, 58–68.CrossRefGoogle Scholar
  12. Golbeck, J., Grimes, J. M., & Rogers, A. (2010). Twitter use by the U.S. Congress. Journal of the American Society for Information Science and Technology, 61(8), 1612–1621.Google Scholar
  13. Gruzd, A., Staves, K., & Wilk, A. (2011). Tenure and promotion in the age of online social media. In Proceedings of the ASIS&T annual meeting, October 9–12, 2011. New Orleans, USA.Google Scholar
  14. Harlow, S., & Johnson, T. J. (2011). Overthrowing the protest paradigm? How the New York Times, Global Voices and Twitter covered the Egyptian revolution. International Journal of Communication, 5, 1359–1374.Google Scholar
  15. Haustein, S., Peters, I., Sugimoto, C. R., Thelwall, M., & Lariviere, V (2013). Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature. Journal of the American Society for Information Science and Technology. doi:10.1002/asi.23101
  16. Honeycutt, C., & Herring, S. C. (2009). Beyond microblogging: Conversation and collaboration via Twitter. In Proceedings of the 42nd Hawaii international conference on system sciences. Retrieved March 29, 2011, from http://ella.slis.indiana.edu/~herring/honeycutt.herring.2009.pdf
  17. Hong, S., & Nadler, D. (2012). Which candidates do the public discuss online in an election campaign? The use of social media by 2012 presidential candidates and its impact on candidate salience. Government Information Quarterly, 29(4), 455–461.CrossRefGoogle Scholar
  18. Huberman, B. A., Romero, D. M., & Wu, F. (2009). Social networks that matter: Twitter under the microscope. First Monday, 14, 1–5. Retrieved June 2, 2011, from http://firstmonday.org/ojs/index.php/fm/article/view/2317/2063.
  19. Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169–2188.CrossRefGoogle Scholar
  20. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.MathSciNetCrossRefMATHGoogle Scholar
  21. Letierce, J., Passant, A., Breslin, J., & Decker, S. (2010) Understanding how Twitter is used to spread scientific messages. In Proceedings of the WebSci10: Extending the frontiers of society on-line, April 26–27, 2010. Raleigh, NC: US. Retrieve January 11, 2013, from http://journal.webscience.org/314/
  22. Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.CrossRefGoogle Scholar
  23. Moed, H. F., De Bruin, R. E., & Van Leeuwen, T. N. (1995). New bibliometric tools for the assessment of national research performance—database description, overview of indicators and first applications. Scientometrics, 33(3), 381–422.CrossRefGoogle Scholar
  24. Priem, J., & Costello, K. (2010). How and why scholars cite on Twitter. In Proceedings of the American Society for Information Science and Technology, 47(1), 1–4. doi:10.1002/meet.14504701201.
  25. Priem, J., & Hemminger, B.H. (2010). Scientometrics 2.0: New metrics of scholarly impact on the social Web. First Monday, 15 (7–5).Google Scholar
  26. Ross, C., Terras, M., Warwick, C., & Welsh, A. (2010). Enabled backchannel: Conference Twitter use by digital humanists. Journal of Documentation, 67(2), 214–237.CrossRefGoogle Scholar
  27. Rowlands, I., Nicholas, D., Russell, B., Canty, N., & Watkinson, A. (2011). Social media use in the research workflow. Learned Publishing, 24(3), 183–195.CrossRefGoogle Scholar
  28. Scanfeld, D., Scanfeld, M., & Larson, E. L. (2010). Dissemination of health information through social networks: Twitter and antibiotics. American Journal of Infection Control, 38(3), 182–188.CrossRefGoogle Scholar
  29. Shuai, X., Pepe, A., & Bollen, J. (2012). How the scientific community reacts to newly submitted preprints: Article downloads, Twitter mentions, and citations. PLoS ONE, 7(11), e47523. doi:10.1371/journal.pone.0047523.CrossRefGoogle Scholar
  30. Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010). Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In Proceedings of IEEE international conference on social computing. Retrieved March 1, 2011, from http://web.mac.com/peter.pirolli/Professional/About_Me_files/2010-04-15-retweetability-v18-final.pdf
  31. Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. (2013a). Do altmetrics work? Twitter and ten other candidates. PLoS ONE, 8(5), e64841. doi:10.1371/journal.pone.0064841.CrossRefGoogle Scholar
  32. Thelwall, M., Tsou, A., Weingart, S., Holmberg, K., & Haustein, S (2013b) Tweeting links to academic articles. Cybermetrics, 17(1). http://cybermetrics.cindoc.csic.es/articles/v17i1p1.html.
  33. Weller, M. (2011). The digital scholar: How technology is transforming scholarly practice. UK: Bloomsbury Academic.Google Scholar
  34. Weller, K., Dröge, E., & Puschmann, C. (2011). Citation analysis in Twitter: Approaches for defining and measuring information flows within tweets during scientific conferences. In M. Rowe, M. Stankovic, A.-S. Dadzie, & M. Hardey (Eds.), Making sense of microposts (#MSM2011), workshop at extended semantic web conference (ESWC 2011) (pp. 1–12). Greece: Crete.Google Scholar
  35. Weller, K., & Puschmann, C. (2011). Twitter for scientific communication: How can citations/references be identified and measured? In Proceedings of the poster session at the web science conference 2011 (WebSci11), Koblenz, Germany. Retrieved January 17, 2013, from http://journal.webscience.org/500/1/153_paper.pdf
  36. Wishart, D. S. (2007). Introduction to cheminformatics. Current protocols in bioinformatics, chapter 14, unit 14.1.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations