Ball, P. (2005). Computer conference welcomes gobbledegook paper. Nature, 434, 946.
Google Scholar
Beel, J., & Gipp, B. (2010). Academic search engine spam and google scholar’s resilience against it. Journal of Electronic Publishing, 13(3). http://hdl.handle.net/2027/spo.3336451.0013.305.
Benzecri J. P. (1980). L’analyse des données. Paris: Dunod.
Cover, T.M., & Hart, P.E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.
MATH
Article
Google Scholar
Dalkilic, M. M., Clark, W. T., Costello, J. C., & Radivojac, P. (2006). Using compression to identify classes of inauthentic texts. In Proceedings of the 2006 SIAM Conference on Data Mining.
Elmacioglu, E., & Lee, D. (2009). Oracle, where shall i submit my papers?. Communications of the ACM (CACM), 52(2), 115–118.
Article
Google Scholar
Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., & Pappas, G. (2008). Comparison of pubmed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338–342.
Article
Google Scholar
Hockey, S., & Martin, J. (1988). OCP users’ manual. Oxford: Oxford University Computing Service.
Jacso, P. (2008). Testing the calculation of a realistic h-index in Google Scholar, Scopus, and Web of Science for F. W. Lancaster. Library Trends, 56(4)
Jacso, P.: The pros and cons of computing the h-index using Google Scholar. Online Information Review, 32(3), 437–452 (2008). doi:10.1108/14684520810889718.
Kato, J. (2005). Isi Web of Knowledge: proven track record of high quality and value. KnowledgeLink newsletter from Thomson Scientific.
Labbé, C. (2010). Ike antkare, one of the great stars in the scientific firmament. International Society for Scientometrics and Informetrics Newsletter, 6(2), 48–52.
Google Scholar
Labbé, C., & Labbé, D. (2001). Inter-textual distance and authorship attribution corneille and moliere. Journal of Quantitative Linguistics 8(3), 213–231.
Article
Google Scholar
Labbé, D. (2007). Experiments on authorship attribution by intertextual distance in english. Journal of Quantitative Linguistics, 14(1), 33–80.
Article
Google Scholar
Lavoie, A., Krishnamoorthy, M. (2010). Algorithmic detection of computer generated text. ArXiv e-prints.
Lee, L. (1999). Measures of distributional similarity. In 37th Annual Meeting of the Association for Computational Linguistics, pp. 25–32.
Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. (2004). The similarity metric. IEEE Transactions on Information Theory, 50(12), 3250–3264.
MathSciNet
Article
Google Scholar
Meyer, D., Hornik, K., & Feinerer, I. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 569–576.
Google Scholar
Parnas, D. L. (2007). Stop the numbers game. Communications of ACM, 50(11), 19–21.
Article
Google Scholar
Roux, M. (1985). Algorithmes de classification. Paris: Masson.
Google Scholar
Roux M. (1994) Classification des données d’enquête. Paris: Dunod.
Google Scholar
Savoy, J. (2006). Les résultats de google sont-ils biaisés? Genève: Le Temps.
Google Scholar
Sneath, P., & Sokal, R. (1973). Numerical Taxonomy. San Francisco: Freeman.
MATH
Google Scholar
Xiong, J., & Huang, T. (2009). An effective method to identify machine automatically generated paper. In Pacific-Asia Conference on Knowledge Engineering and Software Engineering, 2009, KESE ’09, pp. 101–102
Yang, K., & Meho, L. I. (2006). Citation analysis: a comparison of google scholar, scopus, and web of science. American Society for Information Science and Technology, 43(1), 1–15.
Google Scholar