Scientometrics

, Volume 91, Issue 1, pp 295–301 | Cite as

Theory and practice of the shifted Lotka function

Article

Abstract

One of the major drawbacks of the classical Lotka function is that arguments only start from the value 1. However, in many applications one may want to start from the value 0, e.g. when including zero received citations. In this article we consider the shifted Lotka function, which includes the case of zero items. Basic results for the total number of sources, the total number of items and the average number of items per source are given in this framework. Next we give the rank-frequency function (Zipf-type function) corresponding to the shifted Lotka function and prove their exact relation. The article ends with a practical example which can be fitted by a shifted Lotka function.

Keywords

Shifted Lotka function Shifted Zipf function Power laws Zero citations 

References

  1. Ajiferuke, I., & Wolfram, D. (2004). Modelling the characteristics of web page outlinks. Scientometrics, 59(1), 43–62.CrossRefGoogle Scholar
  2. Burrell, Q. L. (2002). Will this paper ever be cited? Journal of the American Society for Information Science and Technology, 53(3), 232–235.CrossRefGoogle Scholar
  3. Burrell, Q. L. (2008). Extending Lotkaian informetrics. Information Processing and Management, 44(5), 1794–1807.CrossRefGoogle Scholar
  4. Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Oxford: Elsevier.Google Scholar
  5. Egghe, L., Guns, R., & Rousseau, R. (2011). Thoughts on uncitedness: Nobel laureates and fields medalists as case studies. Journal of the American Society for Information Science and Technology, 62(8), 1637–1644.CrossRefGoogle Scholar
  6. Egghe, L., & Rousseau, R. (2006). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.CrossRefGoogle Scholar
  7. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–324.Google Scholar
  8. Milojević, S. (2010). Power-law distributions in information science—Making the case for logarithmic binning. Journal of the American Society for Information Science and Technology, 61(12), 2417–2425.CrossRefGoogle Scholar
  9. Nicholls, P. T. (1987). Estimation of Zipf parameters. Journal of the American Society for Information Science, 38, 443–445. Erratum: Journal of the American Society for Information Science, 39, p. 287 (1988).Google Scholar
  10. Pao, M. L. (1985). Lotka’s law: A testing procedure. Information Processing and Management, 21, 305–320.CrossRefGoogle Scholar
  11. Rousseau, R. (1997). Sitations: An exploratory study. Cybermetrics, 1(1), paper 1. http://www.cindoc.csic.es/cybermetrics/articles/v1i1p1.html.
  12. Rousseau, B. & Rousseau, R. (2000). LOTKA: A program to fit a power law distribution to observed frequency data. Cybermetrics, 4(1), paper 4. http://www.cindoc.csic.es/cybermetrics/articles/v4i1p4.html.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Universiteit Hasselt (UHasselt)Campus DiepenbeekDiepenbeekBelgium
  2. 2.Antwerp University (UA), IBWAntwerpenBelgium
  3. 3.KHBO (Association K.U.Leuven)Faculty of Engineering TechnologyOostendeBelgium
  4. 4.Department of MathematicsK. U. LeuvenLeuven (Heverlee)Belgium

Personalised recommendations