Mapping scientific institutions

Abstract

We have developed a set of routines that allows to draw easily different maps of the research carried out in a scientific institution. Our toolkit uses OpenSource elements to analyze bibliometric data gathered from the Web Of Science. We take the example of our institution, ENS de Lyon, to show how different maps, using co-occurrence (of authors, keywords, institutions…) and bibliographic coupling can be built. These maps may become a valuable tool for discussing institutions’ policies, as they offer different views on the institution at a global scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agarwal, P., & Skupin, A. (Eds.) (2008). Self-organising maps: Applications in geographic information science. Chichester: Wiley.

    Google Scholar 

  2. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Proc 3rd Intl ICWSM Conf.

  3. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics, P10008.

  4. Börner, K. (2010). Atlas of science: visualizing what we know. Cambridge, MA: MIT Press

    Google Scholar 

  5. Börner, K., & Scharnhorst, A. (2009). Visual conceptualizations and models of science. Journal of Informetrics, 3, 161–172.

    Article  Google Scholar 

  6. Börner, K., Chen, Ch., & Boyack, K. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.

    Article  Google Scholar 

  7. Cambrosio, A., Keating, P., Mercier, S., Lewison, G., & Mogoutov, A. (2006). Mapping the emergence and development of translational cancer research. European Journal of Cancer, 42, 3140–3148.

    Article  Google Scholar 

  8. Chavalarias, D., & Cointet, J.-P. (2009). The reconstruction of science phylogeny, arXiv:0904.3154v3.

  9. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science Technology, 62, 1382–1402.

    Article  Google Scholar 

  10. Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Science of United States of America, 104, 36–41.

    Article  Google Scholar 

  11. Girvan, M., & Newman, M. E. J. (2004). Finding and evaluating community structure in networks. Phys Rev E, 69, 026113.

    Article  Google Scholar 

  12. Glänzel, W. (2003). Bibliometrics as a research field: A course on theory and application of bibliometric indicators. http://nsdl.niscair.res.in/bitstream/123456789/968/1/Bib_Module_KUL.pd.

  13. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 24, 123–131.

    Google Scholar 

  14. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of American Society of Information Science and Technology, 60(3), 455–476.

    Article  Google Scholar 

  15. Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the American Society for Information Science & Technology, 61(8), 1622–1634.

    Google Scholar 

  16. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science Technology, 60(2), 348–362.

    Google Scholar 

  17. Nietzsche, F. (1969). On the genealogy of morals. New York: Vintage Books (cited by Flyvbjerg B, Making social science matter. Cambridge University Press).

  18. Noyons, E. C. M. (2004). Science maps within a science policy context. In: H. F. Moed, W. Glanzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research, the use of publication and patent statistics in studies of ST systems (pp. 237–256). Dordrecht: Kluwer Academic publishers.

    Google Scholar 

  19. Rafols, I., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  20. Roessner, D (2000). Quantitative and qualitative methods and measures in the evaluation of research. Research Evaluation, 9(2), 125–132.

    Article  Google Scholar 

  21. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24, 265–269.

    Article  Google Scholar 

  22. Small, H. (1999). Visualizing science by citation mapping. Journal of American Society of Information Science, 50(9), 799–813.

    Article  Google Scholar 

  23. Stirling, A. (2008). “Opening up” and “Closing down”: Power, participation, and pluralism in the social appraisal of technology. Science, Technology and Human Values, 33(2), 262–294.

    Article  Google Scholar 

  24. Wood, D., & Fels, J. (2008). The natures of maps: Cartographic constructions of the natural world. Chicago, IL: University of Chicago Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Jensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grauwin, S., Jensen, P. Mapping scientific institutions. Scientometrics 89, 943 (2011). https://doi.org/10.1007/s11192-011-0482-y

Download citation

Keywords

  • Institutions
  • Maps
  • Heterogeneous
  • Governance