Skip to main content
Log in

Mixed-indicators model for identifying emerging research areas

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This study presents a mixed model that combines different indicators to describe and predict key structural and dynamic features of emerging research areas. Three indicators are combined: sudden increases in the frequency of specific words; the number and speed by which new authors are attracted to an emerging research area, and changes in the interdisciplinarity of cited references. The mixed model is applied to four emerging research areas: RNAi, Nano, h-Index, and Impact Factor research using papers published in the Proceedings of the National Academy of Sciences of the United States of America (1982–2009) and in Scientometrics (1978–2009). Results are compared in terms of strengths and temporal dynamics. Results show that the indicators are indicative of emerging areas and they exhibit interesting temporal correlations: new authors enter the area first, then the interdisciplinarity of paper references increases, then word bursts occur. All workflows are reported in a manner that supports replication and extension by others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamson, I. (1992). Access and retrieval of information as coordinates of scientific development and achievement in Nigeria. Scientometrics, 23(1), 191–199.

    Article  MathSciNet  Google Scholar 

  • Bettencourt, L., Kaiser, D., Kaur, J., Castillo-Chavez, C., & Wojick, D. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518.

    Article  Google Scholar 

  • Boyack, K. W. (2004). Mapping knowledge domains: Characterizing PNAS. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1), 5192–5199.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1987). One more version of the facts and figures on publication output and relative citation impact of 107 countries, 1978–1980. Scientometrics, 11(1), 9–15.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1989a). Assessing assessments of British science: Some facts and figures to accept or decline. Scientometrics, 15(3), 165–170.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1989b). The newest version of the facts and figures on publication output and relative citation impact: A collection of relational charts, 1981–1985. Scientometrics, 15(1–2), 13–20.

    Article  Google Scholar 

  • Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 321–325.

    Article  Google Scholar 

  • Chen, C. (2006). Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.

    Article  Google Scholar 

  • Chu, H. (1992). Communication between Chinese and non-Chinese scientists in the discovery of high-TC superconductors: II. The informal perspective. Scientometrics, 25(2), 253–277.

    Article  Google Scholar 

  • Garfield, E., & Small, H. (1989). Identifying the change frontiers of science. In M. Kranzberg, Y. Elkana, & Z. Tadmor (Eds.), Conference proceedings of innovation: At the crossroads between science and technology (pp. 51–65). Haifa, Israel: The S. Neaman Press.

  • Goffman, W. (1966). Mathematical approach to the spread of scientific ideas: The history of mast cell research. Nature, 212(5061), 452–499.

    Article  Google Scholar 

  • Goffman, W. (1971). A mathematical method for analyzing the growth of a scientific discipline. Journal of Association for Computing Machinery, 18(2), 173–185.

    MATH  Google Scholar 

  • Goffman, W., & Harmon, G. (1971). Mathematical approach to the prediction of scientific discovery. Nature, 229(5280), 103–104.

    Article  Google Scholar 

  • Goffman, W., & Newill, V. A. (1964). Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204(4955), 225–228.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the USA, 102(46), 16569–16572.

    Article  Google Scholar 

  • Kajikawa, Y., Yoshikawaa, J., Takedaa, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782.

    Article  Google Scholar 

  • Kim, M.-J. (2001). A bibliometric analysis of physics publications in Korea, 1994–1998. Scientometrics, 50(3), 503–521.

    Article  Google Scholar 

  • Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.

    Article  Google Scholar 

  • Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.

    Article  MathSciNet  Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.

  • Lee, W. H. (2008). How to identify emerging research fields using scientometrics: An example in the field of information security. Scientometrics, 76(3), 1588–2861.

    Article  Google Scholar 

  • Lewison, G. (1991). The scientific output of the EC’s less favoured regions. Scientometrics, 21(3), 383–402.

    Article  Google Scholar 

  • Leydesdorff, L., & Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments. Journal of the American Society for Information Science and Technology, 59(11), 1810–1818.

    Article  Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2007). Knowledge emergence in scientific communication: From “Fullerenes” to “nanotubes”. Scientometrics, 70(3), 603–632.

    Article  Google Scholar 

  • Mane, K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(Suppl 1), 5287–5290.

    Article  Google Scholar 

  • Menard, H. W. (1971). Science: Growth and change. Cambridge, MA: Harvard Univ Press.

    Google Scholar 

  • Merton, R. K. (1968). The matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Price, D. J. D. S. (1970). Citation measures of hard science, softscience, technology, and nonscience. In C. E. A. P. Nelson, D. (Ed.), Communication among scientists and engineers (pp. 3–12): Heath Lexington Books, Massachusetts.

  • Rao, C. R. (1982). Diversity: Its measurement, decomposition, apportionment and analysis. Sankhy: The Indian Journal of Statistics, Series A, 44(1), 1–22.

    MATH  Google Scholar 

  • Scharnhorst, A., & Garfield, E. (2010 in press). Tracing scientific influence. Dynamic of Socio-Economic System, 2(1).

  • Sci2 Team. (2009a). Science of Science (Sci2) Tool: Indiana University and SciTech Strategies, Inc. http://sci2.cns.iu.edu. Accessed 8 June 2010.

  • Sci2 Team. (2009b). Stop word list. http://nwb.slis.indiana.edu/svn/nwb/trunk/plugins/preprocessing/edu.iu.nwb.preprocessing.text.normalization/src/edu/iu/nwb/preprocessing/text/normalization/stopwords.txt. Accessed 11 June 2010.

  • Serenko, A., Bontis, N., Booker, L., Sadeddin, K., & Hardie, T. (2010). A scientometric analysis of knowledge management and intellectual capital academic literature (1994–2008). Journal of Knowledge Management, 14(1), 3–23.

    Article  Google Scholar 

  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 63(3), 595–610.

    Article  Google Scholar 

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.

    Article  Google Scholar 

  • Takeda, Y., & Kajikawa, Y. (2009). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics, 78(3), 543–558.

    Article  Google Scholar 

  • Thomson Reuters (2010). Web of science. http://scientific.thomsonreuters.com/products/wos/. Accessed 8 June 2010.

  • Tsipouri, L. (1991). Effects of EC R&D policy on Greece: Some thoughts in view of the stride programme. Scientometrics, 21(3), 403–416.

    Article  Google Scholar 

  • Van Raan, A. F. J. (2000). On growth, ageing, and fractal differentiation of science. Scientometrics, 47(2), 1588–2861.

    Google Scholar 

  • Watts, R. J., & Porter, A. L. (2003). R&D cluster quality measures and technology maturity. Technological Forecasting and Social Change, 70(8), 735–758.

    Article  Google Scholar 

  • Weingart, S., Guo, H., Börner, K., Boyack, K. W., Linnemeier, M. W., & Duhon, R. J., et al. (2010). Science of Science (Sci2) Tool User Manual. http://sci2.wiki.cns.iu.edu. Accessed 28 Jan 2011.

  • Zitt, M., & Bassecoulard, E. (2008). Challenges for scientometric indicators: Data de-mining, knowledge flows measurements and diversity issues. Ethics in Science and Environmental Politics, 8, 49–60.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Joseph Biberstine and Russell J. Duhon for developing custom queries and code and appreciate the expert comments from the three anonymous reviewers. This work is funded by the James S. McDonnell Foundation and the National Institutes of Health under awards R21DA024259 and U24RR029822.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanning Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Weingart, S. & Börner, K. Mixed-indicators model for identifying emerging research areas. Scientometrics 89, 421–435 (2011). https://doi.org/10.1007/s11192-011-0433-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0433-7

Keywords

Navigation