Skip to main content
Log in

Citation lag analysis in supply chain research

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Interdisciplinary research is expected to contribute to industrial and economic development. However, due to expansion of knowledge and the fragmentation of research fields, knowledge dissemination among different research fields is rare and we need a methodology for measuring such dissemination and promoting it. In this paper, we introduce a citation lag analysis of inter- and intra-clusters extracted by citation network analysis as a new indicator to represent the speed of knowledge diffusion in subfields of a research field. A case study was performed within supply chain research to investigate knowledge integration among its subfields. Based on the analysis, we discuss knowledge structure and reciprocal influence of subfields in supply chain research. This study contributes to offering a new approach for analyzing and understanding the development of boundary spanning research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arntzen, B. C., Brown, G. G., Harrison, T. P., & Trafton, L. L. (1995). Global supply chain management at Digital-Equipment-Corporation. Interfaces, 25(1), 69–93.

    Article  Google Scholar 

  • Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3–4), 275–292.

    Article  Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Article  Google Scholar 

  • Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436–443.

    Article  Google Scholar 

  • Chen, F., Federgruen, A., & Zheng, Y. S. (2001). Coordination mechanisms for a distribution system with one supplier and multiple retailers. Management Science, 47(5), 693–708.

    Article  Google Scholar 

  • Christopher, M. (2000). The agile supply chain—competing in volatile markets. Industrial Marketing Management, 29(1), 37–44.

    Article  MathSciNet  Google Scholar 

  • Dyer, J. H., Cho, D. S., & Chu, W. J. (1998). Strategic supplier segmentation: The next “best practice” in supply chain management. California Management Review, 40(2), 57–77.

    Google Scholar 

  • Emmons, H., & Gilbert, S. M. (1998). Note. The role of returns policies in pricing and inventory decisions for catalogue goods. Management Science, 44(2), 276–283.

    Article  MATH  Google Scholar 

  • Ertogral, K., & Wu, S. D. (2000). Auction-theoretic coordination of production planning in the supply chain. IIE Transactions, 32(10), 931–940.

    Google Scholar 

  • Fisher, M. L. (1997). What is the right supply chain for your product? Harvard Business Review, 75(2), 105–116.

    Google Scholar 

  • Fleischmann, M., Beullens, P., & Bloemhof-Ruwaard, J. M. (2001). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156–173.

    Article  Google Scholar 

  • Fox, M. S., Barbuceanu, M., & Teigen, R. (2000). Agent-oriented supply-chain management. International Journal of Flexible Manufacturing Systems, 12(2), 165–188.

    Article  Google Scholar 

  • Frohlich, M. T., & Westbrook, R. (2001). Arcs of integration: An international study of supply chain strategies. Journal of Operations Management, 19(2), 185–200.

    Article  Google Scholar 

  • Guide, V. D. R., Jayaraman, V., Srivastava, R., & Benton, W. C. (2000). Supply-chain management for recoverable manufacturing systems. Interfaces, 30(3), 125–142.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computers & Chemical Engineering, 27(8–9), 1219–1227.

    Article  Google Scholar 

  • Kajikawa, Y., Abe, K., & Noda, S. (2006). Filling the gap between researchers studying different materials and different methods: A proposal for structured keywords. Journal of Information Science, 32(6), 511–524.

    Article  Google Scholar 

  • LaLonde, B. J. (1998). Supply chain evolution by the numbers. Supply Chain Management Review, 2(1), 7–8.

    Google Scholar 

  • Lancioni, R. A., Smith, M. F., & Oliva, T. A. (2000). The role of the Internet in supply chain management. Industrial Marketing Management, 29(1), 45–56.

    Article  Google Scholar 

  • Lee, H. L. (2002). Aligning supply chain strategies with product uncertainties. California Management Review, 44(3), 105–119.

    Google Scholar 

  • Lee, H. L., & Billington, C. (1993). Material management in decentralized supply chains. Operations Research, 41(5), 835–847.

    Article  MATH  Google Scholar 

  • Lee, H. L., Padmanabhan, V., & Whang, S. J. (1997a). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558.

    Article  MATH  Google Scholar 

  • Lee, H. L., Padmanabhan, V., & Whang, S. J. (1997b). The bullwhip effect in supply chain. Sloan Management Review, 38(3), 93–102.

    Google Scholar 

  • Leydesdorff, L. (1995). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Leiden University: Leiden DSWO Press.

    Google Scholar 

  • Leydesdorff, L., & Amsterdamska, O. (1990). Dimensions of citation analysis. Science, Technology & Human Values, 15, 305–335.

    Article  Google Scholar 

  • Narashimhan, R., & Jayaram, J. (1998). Causal linkages in supply chain management: An exploratory study of North American manufacturing firms. Decision Sciences, 29(3), 579–605.

    Article  Google Scholar 

  • Naylor, J. B., Naim, M. M., & Berry, D. (1999). Leagility: Integrating the lean and agile manufacturing paradigms in the total supply chain. International Journal of Production Economics, 62(1–2), 107–118.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review, E 69, 066133.

    Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review, E 69, 026133.

    Google Scholar 

  • Oliver, R. K., & Webber, M. D. (1982). Supply-chain management: Logistics catches up with strategy. Outlook; reprinted in Christopher, M. G. (1992), Logistics, the strategic issue (pp. 63–75). London: Chapman and Hall.

  • Ozer, O., & Wei, W. (2006). Strategic commitments for an optimal capacity decision under asymmetric forecast information. Management Science, 52(8), 1238–1257.

    Article  Google Scholar 

  • Pieters, R., & Baumgartner, H. (2002). Who talks to whom? Intra- and interdisciplinary communication of economics journals. Journal of Economic Literature, 40(2), 483–509.

    Article  Google Scholar 

  • Porter, A. L., & Chubin, D. E. (1985). Indicator of cross-disciplinary research. Scientometrics, 8(3–4), 161–176.

    Article  Google Scholar 

  • Porter, A. L., Cohen, A. S., Roessner, J. D., et al. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–174.

    Article  Google Scholar 

  • Porter, A. L., & Rafols, I. (2009). Measuring and mapping interdisciplinarity in six research fields over time (1975–2005). Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Rinia, E. J., Van Leeuwen, T. N., Bruins, E. E. W., et al. (2002). Measuring knowledge transfer between fields of science. Scientometrics, 54(3), 347–362.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.

    Article  Google Scholar 

  • Stratton, R., & Warburton, R. D. H. (2003). The strategic integration of agile and lean supply. International Journal of Production Economics, 85(2), 183–198.

    Article  Google Scholar 

  • Subramani, M. (2004). How do suppliers benefit from information technology use in supply chain relationships? MIS Quarterly, 28(1), 45–73.

    MathSciNet  Google Scholar 

  • Swaminathan, J. M., Smith, S. F., & Sadeh, N. M. (1998). Modeling supply chain dynamics: A multiagent approach. Decision Sciences, 29(3), 607–632.

    Article  Google Scholar 

  • Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94(1), 1–15.

    Article  MATH  Google Scholar 

  • Tijssen, R. J. W. (1992). A quantitative assessment of interdisciplinary structures in science and technology: Co-classification analysis of energy research. Research Policy, 21(1), 27–44.

    Article  Google Scholar 

  • Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon supply chain networks under demand uncertainty. Industrial & Engineering Chemistry Research, 40(16), 3585–3604.

    Article  Google Scholar 

  • Van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9(3), 183–187.

    Article  Google Scholar 

  • Vidal, C. J., & Goetschalckx, M. (1997). Strategic production-distribution models: A critical review with emphasis on global supply chain models. European Journal of Operational Research, 98(1), 1–18.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous referees and the editor for their time as well as their useful comments and suggestions throughout the review process. We also would like to thank Dr. Antonio K. W. Lau at the Hong Kong University of Science and Technology for his helpful discussions. This research was partially supported by the New Energy and Industrial Technology Development Organization (NEDO), and a Grant for Industrial Technology Research (09D47001a). This research was also supported by the Ministry of Education, Science, Sports and Culture (MEXT) Grant-in-Aid for Young Scientists (B) (21700266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Kajikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, H., Suzuki, S., Hironori, T. et al. Citation lag analysis in supply chain research. Scientometrics 87, 221–232 (2011). https://doi.org/10.1007/s11192-011-0341-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0341-x

Keywords

Navigation