, 76:225 | Cite as

The measurement of Italian universities’ research productivity by a non parametric-bibliometric methodology

  • Giovanni AbramoEmail author
  • Ciriaco Andrea D’Angelo
  • Fabio Pugini


This paper presents a methodology for measuring the technical efficiency of research activities. It is based on the application of data envelopment analysis to bibliometric data on the Italian university system. For that purpose, different input values (research personnel by level and extra funding) and output values (quantity, quality and level of contribution to actual scientific publications) are considered. Our study aims at overcoming some of the limitations connected to the methodologies that have so far been proposed in the literature, in particular by surveying the scientific production of universities by authors’ name.


Data Envelopment Analysis Total Factor Productivity Data Envelopment Analysis Model Disciplinary Area Pure Technical Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, M., Doucouliagos, C. (2003). The efficiency of Australian universities: A data envelopment analysis. Economics of Education Review, 22(1): 89–97.CrossRefGoogle Scholar
  2. Abramo, G. (2006). Non è tutto oro quello che luccica,
  3. Abramo, G., Pugini, F. (2004). Un’analisi della produttività scientifica e brevettuale delle università italiane. Laboratory for Studies of Research and Technology Transfer — Working Paper ( Scholar
  4. Abramo, G., Pugini, F. (2005). L’attività di licensing delle università italiane: un’indagine empirica. Economia e Politica Industriale, XXXII(3): 43–60.Google Scholar
  5. Adams, J. D., Griliches, Z. (2000). Research productivity in a system of universities, in: D. Encaoua, B. H. Hall, H. Laisney, J. Mairesse (Eds). The Economics and Econometrics of Innovation, Kluwer Academic Publisher.Google Scholar
  6. Agrawal, A., Henderson, R. (2002). Putting Patents in Context: exploring knowledge transfer from MIT. Management Science, 48(1): 44–60.CrossRefGoogle Scholar
  7. Athanassopoulos, A. D., Shale, E. (1997). Assessing the comparative efficiency of higher education institutions in the UK by means of data envelopment analysis. Education Economics, 5: 117–134.CrossRefGoogle Scholar
  8. Baek, Y. (2006). Publishing Productivity of US Academic Scientists and Engineers: An Empirical Examination through Data Envelopment Analysis. “New Frontiers In Evaluation” Conference, Vienna, April 2006.Google Scholar
  9. Banker, R. D., Charnes, A., Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9): 1078–1092.zbMATHCrossRefGoogle Scholar
  10. Bonaccorsi, A. (2003). Il sistema della ricerca pubblica in Italia. Franco Angeli ed., Bologna-Italy.Google Scholar
  11. Bonaccorsi, A., Daraio, C. (2003). A robust nonparametric approach to the analysis of scientific productivity. Research Evaluation, 12(1): 47–69.CrossRefGoogle Scholar
  12. Bonaccorsi, A., Daraio, C., Simar, L. (2006). Advanced indicators of productivity of universities. An application of robust nonparametric methods to Italian data. Scientometrics, 66(2): 389–410.CrossRefGoogle Scholar
  13. Bordons, M., Morillo, F., Fernández, M. T., Gómez, I. (2003). One step further in the production of bibliometric indicators at the micro level: Differences by gender and professional category of scientists. Scientometrics, 57(2) 159–173.CrossRefGoogle Scholar
  14. Charnes, A., Cooper, W. W., Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2: 429–444.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Cohen, W. M., Nelson, R. R., Walsh, J. P. (2002). Links and impacts: the influence of public research on industrial R&D. Management Science, 48(1): 1–23.CrossRefGoogle Scholar
  16. Colyvas, J., Crow, M., Gelijns, A., Mazzoleni, R., Nelson, R. R., Rosenberg, N., Sampat, B. N. (2002). How do University inventions get into practice?. Management Science, 48(1): 61–72.CrossRefGoogle Scholar
  17. CRUI-Association of The Deans of The Italian Universities (2002). La Ricerca Scientifica Nelle Università Italiane. Una Prima Analisi Delle Citazioni Della Banca Dati Isi.Google Scholar
  18. Flegg, A. T., Allen, D. O., Field, K., Thurlow, T. W. (2004). Measuring the efficiency of British Universities: A multi-period data envelopment analysis. Education Economics, 12(3): 231–249.CrossRefGoogle Scholar
  19. Gauffriau, M., Larsen, P. O. (2005). Counting methods are decisive for rankings based on publication and citation studies. Scientometrics, 64(1): 85–93.CrossRefGoogle Scholar
  20. Horrobin, D. F. (1990). The philosophical basis of peer review and the suppression of innovation. Journal of the American Medical Association, 263: 1438–1441.CrossRefGoogle Scholar
  21. Lach, S., Schankerman, M. (2003). Incentives and Invention in Universities. NBER working paper #9727.Google Scholar
  22. MacRoberts, M. H., MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36: 435–444CrossRefGoogle Scholar
  23. Moed, H. F., (2002). The impact-factors debate: the ISI’s uses and limits. Nature, 415: 731–732.Google Scholar
  24. Moxham, H., Anderson, J. (1992). Peer review. A view from the inside. Science and Technology Policy, 7–15.Google Scholar
  25. NSB — National Science Board (2004), Science and Engineering Indicators.Google Scholar
  26. OECD (2003), Turning Science into Business: Patenting and Licensing at Public Research Organizations.Google Scholar
  27. Prpic, K. (1996). Characteristics and determinants of eminent scientist’ productivity. Scientometrics, 36: 185–206.CrossRefGoogle Scholar
  28. RAE — Research Assessment Methodology (2001), Scholar
  29. Scheel, H. (2000). EMS: Efficiency Measurement System. A Data Envelopment Analysis (DEA) Software.
  30. Siegel, D. S., Waldman, D. A., Link, A. N. (2003). Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study. Research Policy, 32: 27–48.CrossRefGoogle Scholar
  31. Torvik, V. I., Weeber, M., Swanson, D. R., Smalheiser, N. R. (2005). A probabilistic similarity metric for medline records: A model for author name disambiguation. Journal of the American Society for Information Science and Technology, 56(2) 140–158.CrossRefGoogle Scholar
  32. Van Raan, A. F. J. (2005). Fatal attraction: Conceptual and methodological problems in the ranking of universities by bibliometric methods. Scientometrics, 62(1): 133–143.CrossRefGoogle Scholar
  33. VSNU (2002). Quality Assessment of Research. Chemistry and Chemical Engineering Research in the Netherlands. Utrecht: VSNU. Disponibile su: www.cwts.nlGoogle Scholar
  34. Wooding, S., Wilcox-Jay, K., Lewison, G., Grant, J. (2006). Co-author inclusion: A novel recursive algorithmic method for dealingwith homonyms in bibliometric analysis. Scientometrics, 66(1) 11–21.CrossRefGoogle Scholar
  35. Worthington, A. C., Lee, B. L. (2005). Efficiency, Technology and Productivity Change in Australian Universities, 1998–2003, University of Wollongong — Working Paper.Google Scholar
  36. Zainab, A. N. (1999). Personal, academic and departmental correlates of research productivity: a review of literature. Malaysian Journal of Library & Information Science, 4(2): 73–110.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Giovanni Abramo
    • 1
    • 2
    • 3
    Email author
  • Ciriaco Andrea D’Angelo
    • 1
  • Fabio Pugini
    • 1
  1. 1.Laboratory for Studies of Research and Technology Transfer, School of Engineering, Department of ManagementUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Italian National Research CouncilRomeItaly
  3. 3.Dipartimento di Ingegneria dell’ImpresaUniversità degli Studi di Roma “Tor Vergata”RomeItaly

Personalised recommendations