Skip to main content

Abduction as a Mode of Inference in Science Education


The central argument of this article is that abduction as a “mode of inference” is a key element in the nature of scientists’ science and should consequently be introduced in school science. Abduction generally understood as generation and selection of hypotheses permits to articulate the classical scientific contexts of discovery and justification and provides educational insights into scientific methodology, this being a particularly important issue in science teaching. However, abductive reasoning has been marginally treated in the philosophy of science until relatively recently; accordingly, we deem it important to perform an “archaeology” of the concept that considers C. S. Peirce’s seminal contributions. We also choose to review contemporary treatments in order to recognise useful classifications to support more meaningful ways of teaching science and the nature of science. An elucidation of the participation of abductive inferences in knowledge construction seems necessary for us to derive conceptual input for the understanding and design of explanations in school science. Some prospective examples of “school scientific abduction” are discussed in the article through the lens of the results of our theoretical analysis.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. As a “third way” in the traditional association of deduction with necessity and induction with probability, Peirce recovers Aristotelian abduction construing it as the process of possible inference (cf. Shook 2016, and for the notion of “strength” of such an inference: Peirce 1931-1958 [1903]: CP 5.180-212). In the Peircean framework, abduced conclusions are plausible (weak) and “pursuit-worthy” (i.e. they should be further investigated). From a pragmatist point of view, they lead to courses of action. We thank an anonymous reviewer of our article for their insightful suggestions towards the phrasing of these distinctions.

  2. According to Woosuk Park (2015), this may have been the driving force of Peirce’s monumental studies on abduction.

  3. Classically, knowledge acquired through experience would be considered the core of that background, but it only constitutes a part of the whole cognitive dimension, which also encompasses emotions, feelings, beliefs, expectations, judgements, etc. All these elements of course “load” the inferential mechanisms in the agents, and this particularly holds in the case of reasoning directed towards the recreation of scenarios.

  4. Of course all these considerations are applied to the production of knowledge in general, but they can be smoothly transposed to scientific theorising.

  5. A discussion of the consistent neglect of psychological, ethical, aesthetic, etc., elements in the writings of mainstream logical empiricists can be found in Putnam (2002: chapter 1).

  6. Aliseda (2006: 29–31) identifies abduction in a variety of typified situations: common sense problem-solving, diagnosis, statistical reasoning, and scientific modelling. Medical diagnosis can in itself be reconstructed as an elaborate example of statistical reasoning (p. 29), while scientific discovery would involve producing an explanation “with respect to some body of beliefs” (p. 30) and trying a diversity of options.

  7. For a distinction of process and product in abductive reasoning, see Aliseda (2006: 32–33).

  8. See, for instance, Hanson (1958), Thagard (1988), Aliseda (2006), Sans Pinillos (2017); Rivadulla (2018).

  9. As opposed, for instance, to the more “divergent” process of bricolage proposed by the French anthropologist Claude Lévi-Strauss (1962), a process through which rather original mythological narratives are created.

  10. Just as astronomy is the preferred arena to exemplify AKM abductions, atomic physics seems to be the discipline used to identify GW abductions (in further examples such as electron orbits or quarks). This curious trait of contemporary academic discussion can probably provide hints to understand the differences in the standard rhetoric present in didactical treatments of the aforementioned historical examples in textbooks and teaching.

  11. In Plato’s (and from Socrates’) work, counterexamples are explicitly identified as a formal tool for the then newly born philosophy, which should be used systematically in argumentation. The mechanics of “counterexample production” can be studied in areas as diverse as Euler’s conjecture on the sum of powers and Wittgenstein’s studies on the nature of “certainty”.

  12. In this article, we will not go deeper into the technical issue of the “virtues” that abduction shows for the inferrers (scientists, students), but we have already mentioned some of them that for us seem fruitful for science education. A clear example is that of tentativeness; abductive reasoning (in the contexts that we present as “analogues” for science) “keeps the trial open” until a satisfactory explanation emerges. This provides an image of the scientific method that is extremely formative for students (and for teachers!).

  13. We take the concept of “theoretical model” from the semantic philosophy of science of the last quarter of the twentieth century (see Adúriz-Bravo, 2013a, 2019; Giere 1988, 1991).


  • Adúriz-Bravo, A. (2001). A proposal to teach the abductive argumentation pattern through detective novels, In D. Psillos et al. (Eds.), Proceedings of the third international conference on science education research in the knowledge based society (Vol. II, pp. 715–717). Thessaloniki: Aristotle University of Thessaloniki.

  • Adúriz-Bravo, A. (2002). Aprender sobre el pensamiento científico en el aula de ciencias: Una propuesta para usar novelas policiacas (Learning about scientific thinking in the science classroom: A proposal to use detective novels). Alambique, 31, 105–111.

  • Adúriz-Bravo, A. (2003). “La muerte en el Nilo”: Una propuesta para aprender sobre la naturaleza de la ciencia en el aula de ciencias naturales de secundaria ("Death on the Nile": A proposal to learn about the nature of science in secondary science classes). In A. Adúriz-Bravo, G. A. Perafán, & E. Badillo (Eds.), Actualización en didáctica de las ciencias naturales y las matemáticas (pp. 129–138). Bogotá: Editorial Magisterio.

  • Adúriz-Bravo, A. (2004). Methodology and politics: A proposal to teach the structuring ideas of the philosophy of science through the Pendulum. Science & Education, 13(7–8), 717–731.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2005). “Los descubrimientos del radio”: Una unidad didáctica para enseñar sobre la naturaleza de la ciencia a futuros profesores de ciencias naturales ("The discoveries of radium": An instructional unit to teach the nature of science to prospective science teachers) In D. Couso, E. Badillo, G. A. Perafán & A. Adúriz-Bravo (Eds.), Unidades didácticas en ciencias y matemáticas (pp. 317–336). Bogotá: Editorial Magisterio.

  • Adúriz-Bravo, A. (2011). Fostering model-based school scientific argumentation among prospective science teachers. US-China Education Review, 8(5), 718–723.

  • Adúriz-Bravo, A. (2013a). A ‘Semantic’ View of Scientific Models for Science Education. Science & Education, 22(7), 1593–1611.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2013b). La historia de la ciencia en la enseñanza de la naturaleza de la ciencia: Maria Skłodowska-Curie y la radiactividad (The history of science in teaching the nature of science: Maria Skłodowska-Curie and radioactivity). Educació Química, 16, 10–16.

  • Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (Vol. 2, pp. 1443–1472). Dordrecht: Springer.

  • Adúriz-Bravo, A. (2015). Pensamiento “basado en modelos” en la enseñanza de las ciencias naturales (Model-based thinking in science teaching). Revista del Instituto de Investigaciones en Educación, 6, 20–31.

  • Adúriz-Bravo, A. (2019). Semantic views on models: An appraisal for science education. In A. Upmeier zu Belzen, D. Krüger, J. van Driel (Eds.), Towards a competence-based view on models and modeling in science education (Vol. 12). Models and Modeling in Science Education. Cham: Springer.

  • Adúriz-Bravo, A. (2020). Contributions to the nature of science: Scientific investigation as inquiry, modeling, and argumentation. In C. N. El-Hani, M. Pietrocola, E. F. Mortimer, & M. R. Otero (eds.). Science education research in Latin America (pp. 394–425). Leiden: Brill/Sense.

  • Adúriz-Bravo, A. (2021). Hacia una didáctica de la filosofía de la ciencia para el profesorado de ciencias en formación (Towards a didactics of the philosophy of science for prospective science teachers). In Z. Monroy Nasr, R. León-Sánchez, & G. Alvarez Díaz de León (Eds.), Indagaciones cognoscitivas acerca de la enseñanza de la filosofía y de la ciencia (pp. 1–24). Ciudad de México: Facultad de Psicología de la UNAM.

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A Research-Informed Instructional Unit to Teach the Nature of Science to Pre-Service Science Teachers. Science & Education, 18(9), 1177–1192.

    Article  Google Scholar 

  • Aguayo, W. P. (2011). La teoría de la abducción de Peirce: Lógica, metodología e instinto [Peirce’s theory of abduction: Logic, methodology and instinct]. Ideas y Valores, 60(145), 33–53.

    Google Scholar 

  • Alberida, H., Lufri, L., Festiyed, F., & Barlian, E. (2018). Problem solving model for science learning. IOP Conference Series: Materials Science and Engineering, 335, 012084.

    Article  Google Scholar 

  • Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.

    Article  Google Scholar 

  • Aliseda, A. (2006). Abductive reasoning: Logical investigations into discovery and explanation. Springer.

    Google Scholar 

  • Arfini, S. (2019). Ignorant cognition. A philosophical investigation of the cognitive features of non-knowing. Springer.

    Book  Google Scholar 

  • Aristotle (1964). Analytica priora et posteriora (W.D. Ross, Ed.). Oxford: Oxford University Press.

  • Blachowicz, J. (1996). Ampliative abduction. International Studies in the Philosophy of Science, 10(2), 141–157.

    Article  Google Scholar 

  • Blachowicz, J. (1998). Of two minds: The nature of inquiry. State University of New York.

    Google Scholar 

  • Brigandt, I. (2016). Why the difference between explanation and argument matters to science education. Science & Education, 25, 251–275.

    Article  Google Scholar 

  • Clement, J., & Núñez Oviedo, M.C. (2003). Abduction and analogy in scientific model construction. Paper presented at the National Association for Research in Science Teaching Conference, Philadelphia.

  • Curie. M. (1966). Radium and the new concepts in chemistry. In Nobel Lectures: Chemistry 1901–1921, n/pp. Amsterdam: Elsevier.

  • Dingemanse, M., Perlman, M., & Perniss, P. (2020). Construals of iconicity: Experimental approaches to form-meaning resemblances in language. Language and Cognition, 12(1), 1–14.

    Article  Google Scholar 

  • Eder, M. L., & Adúriz-Bravo, A. (2008). La explicación en las ciencias naturales y en su enseñanza: Aproximaciones epistemológica y didáctica (Explanation in science and in science teaching: Epistemological and didactical approaches). Latinoamericana de Estudios Educativos, 4(2), 101–133.

  • Fann, K. T. (1970). Peirce’s theory of abduction. Martinus Nijhoff.

    Book  Google Scholar 

  • Flash, P., & Kakas, A. (Eds.). (2000). Abduction and induction: Essays on their relation and integration. Kluwer.

    Google Scholar 

  • Frege, G. (1956). The thought: A logical inquiry. Mind, 65(259), 289–311. (German original of 1918-1919.).

    Article  Google Scholar 

  • Gabbay, M., & Woods, J. (2005). A practical logic of cognitive systems: The reach of abduction: Insight and trial (Vol. 2). Elsevier.

    Google Scholar 

  • Giere, R. (1988). Explaining science: A cognitive approach. University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. (1991). Understanding scientific reasoning. Holt, Rinehart & Winston.

    Google Scholar 

  • Grinnell, F. (2019). Abduction in the everyday practice of science: The logic of unintended experiments. Transactions of the Charles S. Peirce Society, 55(3), 215–227.

  • Grosser, M. (1979). The discovery of Neptune. Dover Publications. (Original edition of 1962.).

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. Cambridge University Press.

    Google Scholar 

  • Hanson, N. R. (1971). Observation and explanation: A guide to philosophy of science. George Allen & Unwin.

    Google Scholar 

  • Harman, G. (1965). The inference to the best explanation. Philosophical Review, 74(1), 88–95.

    Article  Google Scholar 

  • Hintikka, J. (1998). What is abduction? The fundamental problem of contemporary epistemology. Transactions of the Charles Sanders Peirce Society, 34, 503–533.

    Google Scholar 

  • Hintikka, J. (1999). Inquiry as inquiry: A logic of scientific discovery. Springer.

    Book  Google Scholar 

  • Hintikka, J. (2007). Socratic epistemology: Explorations of knowledge-seeking by questioning. Cambridge University Press.

    Book  Google Scholar 

  • Hoffmann, M.H.G. (2011). “Theoric transformations” and a new classification of abductive inferences. Transactions of the Charles S. Peirce Society, 46(4), 570–590.

  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science and Education, 12(1), 27–43.

  • Kapitan, T. (1997). Peirce and the structure of abductive inference. In N. Houser, D. D. Roberts, & J. van Evra (Eds.), Studies in the logic of Charles Sanders Peirce (pp. 477–496). Indiana University Press.

    Google Scholar 

  • Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408.

    Article  Google Scholar 

  • Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364.

    Google Scholar 

  • Levi, I. (2005). Inductive inference as ampliative and non monotonic reasoning. In: Proceedings of the 10th Conference on Theoretical Aspects of Rationality and Knowledge (TARK ‘05) (pp. 177–192). Singapore: National University of Singapore.

  • Lévi-Strauss, C. (1962). The savage mind. George Weindenfeld and Nicolson Ltd.

    Google Scholar 

  • Magnani, L. (2001). Abduction, reason, and science: Processes of discovery and explanation. Kluwer/Plenum.

    Book  Google Scholar 

  • Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning. Springer.

    Book  Google Scholar 

  • Magnani, L. (2015). The eco-cognitive model of abduction: ᾿Απαγωγή now: Naturalizing the logic of abduction. Journal of Applied Logic, 13, 285–315.

    Article  Google Scholar 

  • Magnani, L. (2016). The eco-cognitive model of abduction II: Irrelevance and implausibility exculpated. Journal of Applied Logic, 15, 94–129.

    Article  Google Scholar 

  • Magnani, L. (2017). The abductive structure of scientific creativity: An essay on the ecology of cognition. Springer.

    Book  Google Scholar 

  • Magnani, L., Pinillos, A. S., & Arfini, S. (2022). Language: The “Ultimate Artifact” to Build, Develop, and Update Worldviews. Topoi, 41(3), 461–470.

    Article  Google Scholar 

  • Mcauliffe, W. H. B. (2015). How did abduction get confused with inference to the best explanation? Transactions of the Charles S Peirce Society, 51(3), 300–319.

    Article  Google Scholar 

  • McCain, K. (2015). Explanation and the nature of scientific knowledge. Science & Education, 24(7–8), 827–854.

    Article  Google Scholar 

  • Medawar, P. B. (1963). Is the scientific paper a fraud? The Listener, 70, 377–378.

    Google Scholar 

  • Nepomuceno-Fernández, Á., Soler-Toscano, F., & Velázquez-Quesada, F.R. (2014). The fundamental problem of contemporary epistemology. Teorema: Revista Internacional de Filosofía, 33(2), 89–103.

  • Niiniluoto, I. (1999). Defending abduction. Philosophy of Science, 66, S436–S451.

    Article  Google Scholar 

  • Niiniluoto, I. (2014). Representation and truthlikeness. Foundations of Science, 19(4), 375–379.

    Article  Google Scholar 

  • Oh, J. (2012). Understanding scientific inference in the natural sciences based on abductive inference strategies. In: Magnani, L., & Li, P. (Eds). Philosophy and cognitive science: Studies in applied philosophy, epistemology and rational ethics (pp. 221–237). Berlin: Springer.

  • Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.

    Article  Google Scholar 

  • Paavola, S. (2004). Abduction as a logic and methodology of discovery: The importance of strategies. Foundation of Science, 9(3), 267–283.

    Google Scholar 

  • Park, W. (2015). On classifying abduction. Journal of Applied Logic, 13(3), 215–238.

    Article  Google Scholar 

  • Park, W. (2017). Abduction in context: The conjectural dynamics of scientific reasoning. Springer.

    Book  Google Scholar 

  • Peirce, C.S. (1931–1958). The collected papers of Charles Sanders Peirce (8 volumes). Cambridge: Harvard University Press.

  • Putnam, H. (2002). The collapse of the fact/value dichotomy and other essays. Harvard University Press.

    Google Scholar 

  • Rivadulla, A. (2018). Abduction, Bayesianism and best explanations in physics. Culturas Científicas: Revista Latinoamericana De Estudios Sobre Ciencia y Tecnología, 1(1), 63–75.

    Google Scholar 

  • Rothchild, I. (2006). Induction, deduction and the scientific method: An eclectic overview of the practice of science. Society for the Study of Reproduction, Inc. 13 pp. Retrieved on September 19, 2020, from

  • Samaja, J. (2005). Epistemología y metodología: Elementos para una teoría de la investigación científica [Philosophy of science and methodology: Elements for a theory of scientific research] (3rd edition, 6th reprint). Buenos Aires: EUDEBA.

  • San Pinillos, A. (2017). El lado epistemológico de las abducciones: La creatividad en las verdades-proyectadas (The epistemological side of abductions: Creativity in projected truths). Revista Iberoamericana de Argumentación, 1(15): 77–91.

  • Sans Pinillos, A. (2021a). Las cuestiones de valor en el diagnóstico médico: Una aproximación desde el carácter prescriptivo del razonamiento abductivo (Value issues in medical diagnosis: An approach from the prescriptive character of abductive reasoning). In: A. Estany, & D. Casacuberta (Eds.), Epistemología e innovación en medicina (pp. 43–64). Madrid: Plaza y Valdés Editores.

  • Sans Pinillos, A. (2021b). Neglected Pragmatism: Discussing abduction to dissolute classical dichotomies. Foundations of Science.

  • Sans Pinillos, A. & Adúriz-Bravo, A. (2021). Un lugar para el razonamiento abductivo en la formación de profesores de ciencias (A place for abductive reasoning in science teacher education). In Tecné, Episteme y Didaxis, número extraordinario Memorias del IX Congreso Internacional sobre Formación de Profesores de Ciencias (pp. 1825–1830).

  • Sharpe, R. (1970). Induction, abduction, and the evolution of science. Transactions of the Charles S. Peirce Society, 6(1), 17–33. Accessed 2 August 2022.

  • Shelley, C. (1996). Abductive reasoning in archaeology. Philosophy of Science, 63(2), 278–301.

    Article  Google Scholar 

  • Schurz, G. (2008). Patterns of abduction. Synthese, 164, 201–234.

    Article  Google Scholar 

  • Shook, J. R. (2016). Abduction, complex inferences, and emergent heuristics of scientific inquiry. Axiomathes, 26(2), 157–186.

    Article  Google Scholar 

  • Sooknanan, J., & Seemungal, T. (2019). Not so elementary: The reasoning behind a medical diagnosis. MedEdPublish, 8(3), 85.

  • Southerland, S. A., Sinatra, G. M., & Matthews, M. R. (2001). Belief, knowledge, and science education. Educational Psychology Review, 13, 325–351.

    Article  Google Scholar 

  • Stanbrough, J. L. (2009). Physics at BHS. Batesville: Batesville High School. Accessed 2 August 2022.

  • Thagard, P. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy, 75(2), 76–92.

    Article  Google Scholar 

  • Thagard, P. (1988). Computational philosophy of science. MIT Press.

    Book  Google Scholar 

  • Thagard, P. (2007). Abductive inference: From philosophical analysis to neural mechanisms. In A. Feeney & E. Heit (Eds.), Inductive reasoning: Experimental, developmental, and computational approaches (pp. 226–247). Cambridge: Cambridge University Press.

  • Thornberg, R., & Charmaz, K. (2014). Grounded theory and theoretical coding. In U. Flick (Ed.), The Sage handbook of qualitative data analysis (pp. 153–169). Sage Publications Ltd.

    Chapter  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge University Press.

    Google Scholar 

  • Tuzet, G. (2019). Abduction, IBE and standards of proof. The International Journal of Evidence & Proof, 23(1–2), 114–120.

    Article  Google Scholar 

  • Wilkenfeld, D. A., & Lombrozo, T. (2015). Inference to the best explanation (IBE) versus explaining for the best inference (EBI). Science & Education, 24, 1059–1077.

    Article  Google Scholar 

  • Woods, J. (2013). Errors of reasoning: Naturalizing the logic of inference. (Studies in Logic, vol. 45). London: College Publications.

  • Yu, S., & Zenker, F. (2018). Peirce knew why abduction isn’t IBE: A scheme and critical questions for abductive argument. Argumentation, 32, 569–587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Agustín Adúriz-Bravo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adúriz-Bravo, A., Sans Pinillos, A. Abduction as a Mode of Inference in Science Education. Sci & Educ (2022).

Download citation

  • Accepted:

  • Published:

  • DOI: