Skip to main content

The Dynamics of Perspective in Quantum Physics

An Analysis in the Context of Teacher Education

Abstract

Debates on the philosophical interpretations of quantum physics have motivated a renewed interest in how secondary and lower undergraduate students interpret quantum phenomena. In an attempt to contribute to this effort, this paper examines the dynamics of perspective in quantum physics in the context of teacher education. The goal of the study is to investigate how students (N = 36) from a Master’s Degree in Secondary Education Teacher Training in Spain negotiate perspective as they participate in small-group discussions of quantum physics topics. This study focuses on the wave-particle duality, superposition of states, and the calculation of probabilities for two-state systems. The method of research is grounded in sociocultural discourse analysis and focuses on the properties of the utterance as outlined by Bakhtin. Analysis shows that the subjects of the study adopt multiple perspectives when representing the referents of quantum theory. We also find that students’ perspective change is usually followed by a change in the referentially semantic content. Finally, it is suggested that some perspectives are more appropriate than others depending on the task at hand and the learning goals previously defined for instruction.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

Not applicable.

Code Availability

Not applicable.

Notes

  1. 1.

    Particle or wave, according to the experiment (Copenhagen interpretation), or particle and wave, that is, a particle guided by a pilot-wave (de Broglie’s interpretation).

References

  1. Asikainen, M. A., & Hirvonen, P. E. (2014). Probing pre- and in-service physics teachers ’ knowledge using the double-slit thought experiment. Science & Education, 23(9), 1811–1833. https://doi.org/10.1007/s11191-014-9710-1

    Article  Google Scholar 

  2. Baily, C., & Finkelstein, N. D. (2009). Development of quantum perspectives in modern physics. Physical Review Special Topics - Physics Education Research, 5(1), 1–8. https://doi.org/10.1103/PhysRevSTPER.5.010106

    Article  Google Scholar 

  3. Baily, C., & Finkelstein, N. D. (2010). Teaching and understanding of quantum interpretations in modern physics courses. Physical Review Special Topics - Physics Education Research, 6(1), 1–11. https://doi.org/10.1103/PhysRevSTPER.6.010101

    Article  Google Scholar 

  4. Baily, C., & Finkelstein, N. D. (2015). Teaching quantum interpretations: Revisiting the goals and practices of introductory quantum physics courses. Physical Review Special Topics - Physics Education Research, 11(2), 1–14. https://doi.org/10.1103/PhysRevSTPER.11.020124

    Article  Google Scholar 

  5. Bakhtin, M. M. (1986). Speech genres and other late essays (C. Emerson & M. Holquist (eds.)). University of Texas Press.

  6. Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42(4), 358–381. https://doi.org/10.1103/RevModPhys.42.358

    Article  Google Scholar 

  7. Bunge, M. (1965). Physics and reality. Dialectica, 19(3/4), 195–222. https://doi.org/10.1111/j.1746-8361.1965.tb00470.x

    Article  Google Scholar 

  8. Bunge, M. (1968). Analogy in quantum theory: From insight to nonsense. British Journal for the Philosophy of Science, 18(4), 265–286. https://doi.org/10.1093/bjps/18.4.265

    Article  Google Scholar 

  9. Bunge, M. (2003). Twenty-five centuries of quantum physics: From Pythagoras to us, and from subjectivism to realism. Science & Education, 12, 445–466. https://doi.org/10.1023/A:1025336332476

    Article  Google Scholar 

  10. Bungum, B., Bøe, M. V., & Henriksen, E. K. (2018). Quantum talk: How small-group discussions may enhance students’ understanding in quantum physics. Science Education, 102(4), 856–877. https://doi.org/10.1002/sce.21447

    Article  Google Scholar 

  11. Cheong, Y. W., & Song, J. (2014). Different levels of the meaning of wave-particle duality and a suspensive perspective on the interpretation of quantum theory. Science & Education Education, 23(5), 1011–1030. https://doi.org/10.1007/s11191-013-9633-2

    Article  Google Scholar 

  12. Creswell, J. W. (2012). Educational research: planning, conducting and evaluating quantitative and qualitative research (4th ed.). Pearson.

  13. Fischler, H., & Lichtfeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science and Education, 14(2), 181–190. https://doi.org/10.1080/0950069920140206

    Article  Google Scholar 

  14. Freire, O. (2003). A Story Without an ending: The quantum physics contrversy 1950–1970. Science & Education, 12, 573–586. https://doi.org/10.1023/A:1025317927440

    Article  Google Scholar 

  15. Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no “interpretation.” Physics Today, 53(3), 70–71. https://doi.org/10.1063/1.883004

    Article  Google Scholar 

  16. Garritz, A. (2013). Teaching the philosophical interpretations of quantum mechanics and quantum chemistry through controversies. Science & Education, 22(7), 1787–1807. https://doi.org/10.1007/s11191-012-9444-x

    Article  Google Scholar 

  17. Gil, D., & Solbes, J. (1993). The introduction of modern physics: overcoming a deformed vision of science. International Journal of Science Education, 15(3), 255–260. https://doi.org/10.1080/0950069930150303

  18. Greca, I. M., & Freire, O. (2003). Does an emphasis on the concept of quantum states enhance students’ understanding of quantum mechanics? Science & Education, 12, 541–557. https://doi.org/10.1023/A:1025385609694

    Article  Google Scholar 

  19. Greca, I. M., & Freire, O. (2014). Meeting the challenge: quantum physics in introductory physics courses. In International Handbook of Research in History, Philosophy and Science Teaching (pp. 183–209). Springer.

  20. Henriksen, E. K., Angell, C., Vistnes, A. I., & Bungum, B. (2018). What is light? Students’ reflections on thewave-particle duality of light and the nature of physics. Science & Education, 27(1–2), 81–111. https://doi.org/10.1007/s11191-018-9963-1

    Article  Google Scholar 

  21. Jammer, M. (1974). The philosophy of quantum mechanics: The interpretations of QM in historical perspectives. John Wiley and Sons.

  22. Johansson, A., Andersson, S., Salminen-Karlsson, M., & Elmgren, M. (2018). “Shut up and calculate”: The available discursive positions in quantum physics courses. Cultural Studies of Science Education, 13(1), 205–226. https://doi.org/10.1007/s11422-016-9742-8

    Article  Google Scholar 

  23. Johnston, I. D., Crawford, K., & Fletcher, P. R. (1998). Student difficulties in learning quantum mechanics. International Journal of Science Education, 20(4), 427–446. https://doi.org/10.1080/0950069980200404

    Article  Google Scholar 

  24. Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts. Science Education, 87(2), 257–280. https://doi.org/10.1002/sce.10033

    Article  Google Scholar 

  25. Kragh, H. (1992). A sense of history: History of science and the teaching of introductory quantum theory. Science & Education, 1, 349–363. https://doi.org/10.1007/BF00430962

    Article  Google Scholar 

  26. Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & Van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Physics Education Research, 13(1), 010109. https://doi.org/10.1103/PhysRevPhysEducRes.13.010109

    Article  Google Scholar 

  27. Kuhn, T. (1962). The structure of scientific revolutions. University of Chicago Press.

    Google Scholar 

  28. Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. American Journal of Physics, 69(6), 655–701. https://doi.org/10.1119/1.1356698

    Article  Google Scholar 

  29. Lautesse, P., Vila Valls, A., Ferlin, F., Héraud, J. L., & Chabot, H. (2015). Teaching quantum physics in upper secondary school in France: : ‘Quanton’ versus ‘wave–particle’ duality, Two Approaches of the Problem of Reference. Science & Education, 24(7–8), 937–955. https://doi.org/10.1007/s11191-015-9755-9

    Article  Google Scholar 

  30. Lévy-Leblond, J.-M., & Balibar, F. (1990). Quantics: Rudiments of quantum physics. North-Holland.

  31. Lévy-Leblond, J.-M. (2003). On the Nature of quantons. Science & Education, 12, 495–502. https://doi.org/10.1023/A:1025382113814

    Article  Google Scholar 

  32. Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave- and particle-like properties of quantum entities. European Journal of Physics, 23(1), 45–53. https://doi.org/10.1088/0143-0807/23/1/307

    Article  Google Scholar 

  33. Mohan, A. K. (2020). Philosophical standpoints of textbooks in quantum mechanics. Science & Education, 29(3), 549–569. https://doi.org/10.1007/s11191-020-00128-4

    Article  Google Scholar 

  34. Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Open University Press.

    Google Scholar 

  35. Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70(3), 200–209.

    Article  Google Scholar 

  36. Myhrehagen, H., & Bungum, B. (2016). “From the cat’s point of view”: Upper secondary physics students’ reflections on Schrödinger’s thought experiment. Physics Education, 51, 055009.

  37. Niaz, M., & Fernández, R. (2008). Understanding Quantum Numbers in General Chemistry Textbooks. International Journal of Science Education, 30(7), 869–901. https://doi.org/10.1080/09500690701217337

    Article  Google Scholar 

  38. Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565–574. https://doi.org/10.1080/09500690110073982

    Article  Google Scholar 

  39. Pereira, A., Ostermann, F., & Cavalcanti, C. (2009). On the use of a virtual Mach–Zehnder interferometer in the teaching of quantum mechanics. Physics Education, 44(3), 281–291. https://doi.org/10.1088/0031-9120/44/3/008

  40. Pessoa Jr., O. (2003). Conceitos de Física Quântica. Livraria da Física.

  41. Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20(9), 1075–1088. https://doi.org/10.1080/0950069980200905

    Article  Google Scholar 

  42. Sakurai, J. J. (1994). Modern quantum mechanics. Addison-Wesley.

    Google Scholar 

  43. Scarani, V., & Suarez, A. (1998). Introducing quantum mechanics: One-particle interferences. American Journal of Physics, 66(8), 718–721.

    Article  Google Scholar 

  44. Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. The Physical Review, 28(6), 1049–1070. https://doi.org/10.1103/PhysRev.28.1049

    Article  Google Scholar 

  45. Sinarcas, V., & Solbes, J. (2013). Dificultades en el aprendizaje y la enseñanza de la física cuántica en el bachillerato. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 31(3), 9–25.

  46. Solbes, J., & Sinarcas, V. (2010). Una propuesta para la enseñanza aprendizaje de la física cuántica basada en la investigación en didáctica de las ciencias. Revista de Enseñanza de La Física, 23(1 y 2), 57–84. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/7995

  47. Stadermann, H. K. E., Van Den Berg, E., & Goedhart, M. J. (2019). Analysis of secondary school quantum physics curricula of 15 different countries: Different perspectives on a challenging topic. Physical Review Physics Education Research, 15(1), 10130. https://doi.org/10.1103/PhysRevPhysEducRes.15.010130

    Article  Google Scholar 

  48. Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94–116. https://doi.org/10.1002/sce.20038

    Article  Google Scholar 

  49. van Kampen, N. G. (2008). The scandal of quantum mechanics. American Journal of Physics, 76(11), 989–990. https://doi.org/10.2307/582136

    Article  Google Scholar 

  50. Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Harvard University Press.

    Google Scholar 

  51. Wertsch, J. V. (1987). Modes of discourse in the nuclear arms debate. Current Research on Peace and Violence, 10(2/3), 102–112. www.jstor.org/stable/40725066

  52. Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. Harvard University Press.

  53. Whitaker, M. A. B. (1979). History and quasi-history in physics education-part 1. Physics Education, 14(2), 108–112. https://doi.org/10.1088/0031-9120/14/2/009

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (Capes) – Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexsandro Pereira.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All students consent to participate in the present study.

Consent for Publication

All individuals involved in the present study consent for publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, A., Solbes, J. The Dynamics of Perspective in Quantum Physics. Sci & Educ (2021). https://doi.org/10.1007/s11191-021-00252-9

Download citation