On Beyond Constructivism

Using Intersubjective Approaches to Promote Learning in the Science Classroom

Abstract

Constructivism has long been touted as the end-all solution for having K-12 students learn science. At the core of this didactic method is the assumption that given the chance, children will naturally be able to act and think like scientists. In this paper, I review the recent evidence from the cognitive neuroscience and neuroimaging communities that suggests that this core assumption is more than likely incorrect. I also review the recent literature on the philosophies of learning and cognition, which suggests that learning can be made more meaningful through emphasizing the human interrelationships that are central to our thinking processes. I propose an intersubjective approach to science education — an approach in which learning is underpinned with rich intersubjective interactions between the teacher and the students, and the emphasis of what is to be learned is not a factual content, but rather a human activity that undergirds the process of science. By teaching our students about the human interactions that comprise the scientific endeavor, the larger societal community may come to have a better understanding of science. Further, I argue that narratives, which can provide a context for students to understand what scientists do and why they do it, may even serve to motivate more of our students to become scientists. Perhaps by using these more intersubjective approaches to science education, we can begin to improve public understanding of science.

This is a preview of subscription content, access via your institution.

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Arya, D. J., & Maul, A. (2012). The role of the scientific discovery narrative in middle school science education: An experimental study. Journal of Educational Psychology, 104, 1–11. https://doi.org/10.1037/a0028108.

    Article  Google Scholar 

  2. Ballew, M. T., Leiserowitz, A., Roser-Renouf, C., Rosenthal, S. A., Kotcher, J. E., Marlon, J. R., ... & Maibach, E. W. (2019). Climate change in the American mind: Data, tools, and trends. Environment: Science and Policy for Sustainable Development, 61, 4–18. https://doi.org/10.1080/00139157.2019.1589300.

    Article  Google Scholar 

  3. Baraban, M., Mensch, S., & Lyons, D. A. (2016). Adaptive myelination from fish to man. Brain Research, 1641, 149–161. https://doi.org/10.1016/j.brainres.2015.10.026.

    Article  Google Scholar 

  4. Baram-Tsabari, A., & Yarden, A. (2005). Text genre as a factor in the formation of scientific literacy. Journal of Research in Science Teaching, 42, 403–428. https://doi.org/10.1002/tea.20063.

    Article  Google Scholar 

  5. Barron, H. C., Dolan, R. J., & Behrens, T. E. J. (2013). Online evaluation of novel choices by simultaneous representation of multiple memories. Nature Neuroscience, 16, 1492–1498. https://doi.org/10.1038/nn.3515.

    Article  Google Scholar 

  6. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063.

    Article  Google Scholar 

  7. Berland, L. K., Russ, R. S., & West, C. P. (2020). Supporting the scientific practices through epistemologically responsive science teaching. Journal of Science Teacher Education, 31, 264–290. https://doi.org/10.1080/1046560X.2019.1692507.

    Article  Google Scholar 

  8. Biesta, G. (2014). Cultivating humanity or educating the human? Two options for education in the knowledge age. Asia Pacific Education Review, 15, 13–19. https://doi.org/10.1007/s12564-013-9292-7.

    Article  Google Scholar 

  9. Biesta, G. (2016). The rediscovery of teaching: On robot vacuum cleaners, non-egological education and the limits of the hermeneutical world view. Educational Philosophy and Theory, 48, 374–392. https://doi.org/10.1080/00131857.2015.1041442.

    Article  Google Scholar 

  10. Biesta, G. J. J. (2006). Beyond Learning: Democratic Education for a Human Future. Paradigm Publishers.

    Google Scholar 

  11. Biesta, G. J. J. (2012). Giving teaching back to education: Responding to the disappearance of the teacher. Phenomenology & Practice, 6, 35–49.

    Article  Google Scholar 

  12. Bowman, C. R., & Zeithamova, D. (2018). Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J Neurosci, 38, 2605–2614. https://doi.org/10.1523/JNEUROSCI.2811-17.2018.

    Article  Google Scholar 

  13. Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Sci Educ, 95, 639–669. https://doi.org/10.1002/sce.20449.

    Article  Google Scholar 

  14. Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn Sci, 14, 277–290. https://doi.org/10.1016/j.tics.2010.04.004.

    Article  Google Scholar 

  15. Brod, G., Lindenberger, U., & Shing, Y. L. (2017). Neural activation patterns during retrieval of schema-related memories: Differences and commonalities between children and adults. Dev Sci, 20, e12475. https://doi.org/10.1111/desc.12475.

    Article  Google Scholar 

  16. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends Cogn Sci, 11, 49–57. https://doi.org/10.1016/j.tics.2006.11.004.

    Article  Google Scholar 

  17. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., ... & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosc, 29, 1860–1873. https://doi.org/10.1523/JNEUROSCI.5062-08.2009.

    Article  Google Scholar 

  18. Burgin, S. R. (2020). A three-dimensional conceptualization of authentic inquiry-based practices: A reflective tool for science educators. Int J Sci Educ 42, 1465–1484. https://doi.org/10.1080/09500693.2020.1766152.

    Article  Google Scholar 

  19. Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B., & Luna, B. (2020). Development of hippocampal–prefrontal cortex interactions through adolescence. Cerebral Cortex, 30, 1548–1558. https://doi.org/10.1093/cercor/bhz186.

    Article  Google Scholar 

  20. Chiari, G., & Nuzzo, M. L. (1996). Psychological constructivisms: A metatheoretical differentiation. J Constr Psychol, 9, 163–184. https://doi.org/10.1080/10720539608404663.

    Article  Google Scholar 

  21. Chorghay, Z., Káradóttir, R. T., & Ruthazer, E. S. (2018). White matter plasticity keeps the brain in tune: Axons conduct while glia wrap. Front Cell Neurosci, 12, 428. https://doi.org/10.3389/fncel.2018.00428.

    Article  Google Scholar 

  22. Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. SCAN, 9, 1289–1302. https://doi.org/10.1093/scan/nst106.

    Article  Google Scholar 

  23. Cowen, N. (2019). For whom does ‘what works’ work? The political economy of evidence-based education. Educ Res Eval, 25, 81–98. https://doi.org/10.1080/13803611.2019.1617991.

    Article  Google Scholar 

  24. Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nat Rev Neurosci, 10, 59–70. https://doi.org/10.1038/nrn2555.

    Article  Google Scholar 

  25. d’Argembeau, A. (2013). On the role of the ventromedial prefrontal cortex in self-processing: The valuation hypothesis. Front Hum Neurosci, 7, 372. https://doi.org/10.3389/fnhum.2013.00372.

    Article  Google Scholar 

  26. de Faria Jr, O., Pama, E. A. C., Evans, K., Luzhynskaya, A., & Káradóttir, R. T. (2018). Neuroglial interactions underpinning myelin plasticity. Dev Neurobiol, 78, 93–107. https://doi.org/10.1002/dneu.22539.

    Article  Google Scholar 

  27. de Jaegher, H., & di Paolo, E. (2007). Participatory sense-making: An enactive approach to social cognition. Phenomenol Cogn Sci, 6, 485–507. https://doi.org/10.1007/s11097-007-9076-9.

    Article  Google Scholar 

  28. de Pasquale, F., della Penna, S., Snyder, A. Z., Marzetti, L., Pizzella, V., Romani, G. L., & Corbetta, M. (2012). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74, 753–764. https://doi.org/10.1016/j.neuron.2012.03.031.

    Article  Google Scholar 

  29. Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the role of the ventromedial prefrontal cortex. Nat Neurosci, 19, 1545–1552. https://doi.org/10.1038/nn.4438.

    Article  Google Scholar 

  30. Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychol Bull, 143, 1033–1081. https://doi.org/10.1037/bul0000096.

    Article  Google Scholar 

  31. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Stud Sci Educ, 13, 105–122. https://doi.org/10.1080/0305726808559933.

    Article  Google Scholar 

  32. Duranti, A. (2010). Husserl, intersubjectivity and anthropology. Anthropological Theory, 10, 16–35. https://doi.org/10.1177/1463499610370517.

    Article  Google Scholar 

  33. Eger, M. (1992). Hermeneutics and science education: An introduction. Science & Education, 1, 337–348. https://doi.org/10.1007/BF00430961.

    Article  Google Scholar 

  34. Eichenbaum, H. (2017). Memory: Organization and control. Annu Rev Psychol, 68, 19–45. https://doi.org/10.1146/annurev-psych-010416-044131.

    Article  Google Scholar 

  35. Elbaz, B., & Popko, B. (2019). Molecular control of oligodendrocyte development. Trends Neurosci, 42, 263–277. https://doi.org/10.1016/j.tins.2019.01.002.

    Article  Google Scholar 

  36. Eluvathingal, T. J., Chugani, H. T., Behen, M. E., Juhász, C., Muzik, O., Maqbool, M., ... & Makki, M. (2006). Abnormal brain connectivity in children after early severe socioemotional deprivation: A diffusion tensor imaging study. Pediatrics, 117, 2093–2100. https://doi.org/10.1542/peds.2005-1727.

    Article  Google Scholar 

  37. Fair, D. A., Cohen, A. L., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Barch, D. M., ... & Schlaggar, B. L. (2008). The maturing architecture of the brain’s default network. Proc Natl Acad Sci, 105, 4028–4032. https://doi.org/10.1073/pnas.0800376105.

    Article  Google Scholar 

  38. Faucher, L., Mallon, R., Nazer, D., Nichols, S., Ruby, A., Stich, S., & Weinberg, J. (2002). The baby in the lab-coat: Why child development is not an adequate model for understanding the development of science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The Cognitive Basis of Science (pp. 335–362). Cambridge University Press.

  39. Feldman, A., Divoll, K., & Rogan-Klyve, A. (2009). Research education of new scientists: Implications for science teacher education. J Res Sci Educ, 46, 442–459. https://doi.org/10.1002/tea.20285.

    Article  Google Scholar 

  40. Fellows, L. K. (2018). The neuroscience of human decision-making through the lens of learning and memory. In R. E. Clark, & S. Martin (Eds.) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, 37, 231–251. Springer, Cham. https://doi.org/10.1007/7854_2016_468.

  41. Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci, 31, 361–370. https://doi.org/10.1016/j.tins.2008.04.001.

    Article  Google Scholar 

  42. Fields, R. D. (2014). Myelin—more than insulation. Sci, 344, 264–266. https://doi.org/10.1126/science.1253851.

    Article  Google Scholar 

  43. Fields, R. D. (2015). A new mechanism of nervous system plasticity: Activity-dependent myelination. Nat Rev Neurosci, 16, 756–767. https://doi.org/10.1038/nrn4023.

    Article  Google Scholar 

  44. Fivush, R. (2018). The sociocultural functions of episodic memory. Behavioral and Brain Sciences, 41. https://doi.org/10.1017/S0140525X17000012.

  45. Ford, M. J., & Forman, E. A. (2006). Redefining disciplinary learning in classroom contexts. Rev Res Educ, 30, 1–32. https://doi.org/10.3102/0091732X030001001.

    Article  Google Scholar 

  46. Furtak, E. M., & Penuel, W. R. (2019). Coming to terms: Addressing the persistence of “hands-on” and other reform terminology in the era of science as practice. Sci Educ, 103, 167–186. https://doi.org/10.1002/sce.21488.

    Article  Google Scholar 

  47. Gallagher, S. (2001). The practice of mind: Theory, simulation or primary interaction? Journal of Consciousness Studies, 8,83–108.

  48. Gallagher, S. (2006). The narrative alternative to theory of mind. In R. Menary (Ed.), Radical Inactivism: Intentionality, Phenomenology, and narrative (pp. 223–229). John Benjamins Publishing Company.

  49. Gallagher, S. (2009). Two problems of intersubjectivity. Journal of Consciousness Studies, 16, 289–308.

  50. Gallagher, S. (2017). The narrative sense of others. Journal of Ethnographic Theory, 7, 467–473. https://doi.org/10.14318/hau7.2.039.

  51. Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104–114. https://doi.org/10.1016/j.neuropsychologia.2013.11.010.

    Article  Google Scholar 

  52. Ghosh, V. E., Moscovitch, M., Colello, B. M., & Gilboa, A. (2014). Schema representation in patients with ventromedial PFC lesions. J Neurosci, 34, 12057–12070. https://doi.org/10.1523/JNEUROSCI.0740-14.2014.

    Article  Google Scholar 

  53. Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends Cogn Sci, 21, 618–631. https://doi.org/10.1016/j.tics.2017.04.013.

    Article  Google Scholar 

  54. Gopnik, A. (1996). The scientist as child. Philos Sci, 63, 485–514. https://doi.org/10.1086/289970.

    Article  Google Scholar 

  55. Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional networks from birth to adulthood: a guide to neuroimaging literature. NeuroImage, 160, 15–31. https://doi.org/10.1016/j.neuroimage.2017.01.079.

    Article  Google Scholar 

  56. Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83, 1019–1039. https://doi.org/10.1016/j.neuron.2014.08.031.

    Article  Google Scholar 

  57. Hadzigeorgiou, Y., Klassen, S., & Klassen, C. F. (2012). Encouraging a “romantic understanding” of science: The effect of the Nikola Tesla story. Science & Education, 21, 1111–1138. https://doi.org/10.1007/s11191-011-9417-5.

    Article  Google Scholar 

  58. Helgevold, N. (2016). Teaching as creating space for participation – establishing a learning community in diverse classrooms. Teach Teach: Theory Pract, 22, 315–328. https://doi.org/10.1080/13540602.2015.1058590.

    Article  Google Scholar 

  59. Hill, R. A., Wu, Y. W. C., Kwek, P., & van den Buuse, M. (2014). Modulatory effects of sex steroid hormones on brain-derived neurotrophic factor-tyrosine kinase B expression during adolescent development in C57Bl/6 mice. J Neuroendocrinol, 24, 774–788. https://doi.org/10.1111/j.1365-2826.2012.02277.x.

    Article  Google Scholar 

  60. Hong, H.-Y., & Lin-Siegler, X. (2012). How learning about scientists’ struggles influences students’ interest and learning in physics. J Educ Psychol, 104, 469–484. https://doi.org/10.1037/a0026224.

    Article  Google Scholar 

  61. Huijbers, W., Pennartz, C. M. A., Cabeza, R., & Daselaar, S. M. (2011). The hippocampus is coupled with the default network during memory retrieval but not during memory encoding. PLoS ONE, 6, e17463. https://doi.org/10.1371/journal.pone.0017463.

    Article  Google Scholar 

  62. Hutto, D. D. (2008). Folk Psychological Narratives: The Sociocultural Basis of Understanding Reasons. MIT press.

    Google Scholar 

  63. Hwang, K., Hallquist, M. N., & Luna, B. (2013). The development of hub architecture in the human functional brain network. Cereb Cortex, 23, 2380–2393. https://doi.org/10.1093/cercor/bhs227.

    Article  Google Scholar 

  64. Immordino-Yang, M. H., Christodoulou, J. A., & Singh, V. (2012). Rest is not idleness: Implications of the brain’s default mode for human development and education. Perspect on Psycholog Sci, 7, 352–364. https://doi.org/10.1177/1745691612447308.

    Article  Google Scholar 

  65. Ingold, T. (2018). Anthropology and/as education. Routledge.

    Google Scholar 

  66. Keven, N. (2016). Events, narratives and memory. Synthese, 193, 2497–2517. https://doi.org/10.1007/s11229-015-0862-6.

    Article  Google Scholar 

  67. Kilford, E. J., Garrett, E., & Blakemore, S.-J. (2016). The development of social cognition in adolescence: An integrated perspective. Neurosci Biobehav Rev, 70, 106–120. https://doi.org/10.1016/j.neubiorev.2016.08.016.

    Article  Google Scholar 

  68. Kim, H. (2020). Stability or plasticity? — A hierarchical allostatic regulation model of medial prefrontal cortex function for social valuation. Frontiers in Neuroscience, 14https://doi.org/10.3389/fnins.2020.00281.

  69. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ Psychol, 41, 75–86. https://doi.org/10.1207/s15326985ep4102_1.

    Article  Google Scholar 

  70. Kumaran, D., Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making. Neuron, 63, 889–901. https://doi.org/10.1016/j.neuron.2009.07.030.

    Article  Google Scholar 

  71. Larison, K. D. (2018). Taking the scientist’s perspective: The nonfiction narrative engages episodic memory to enhance students’ understanding of scientists and their practices. Science & Education, 27, 133–157. https://doi.org/10.1007/s11191-018-9957-z.

    Article  Google Scholar 

  72. Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev, 94, 179–195. https://doi.org/10.1016/j.neubiorev.2018.09.005.

    Article  Google Scholar 

  73. Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern. Critical Inquiry, 30, 225–248.

  74. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.

    Book  Google Scholar 

  75. Levinas, E. (1996). Emmanuel Levinas: Basic philosophical writings. Indiana University Press.

  76. Liu, J., Dietz, K., DeLoyht, J. M., Pedre, X., Kelkar, D., Kaur, J., ... & Casaccia, P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci, 15, 1621–1623. https://doi.org/10.1038/nn.3263.

    Article  Google Scholar 

  77. Liu, J., Moyon, S., Hernandez, M., & Casaccia, P. (2016). Epigentic control of oligodendrocyte development: Adding new players to old keepers. Curr Opin Neurobiol, 39, 133–138. https://doi.org/10.1016/j.conb.2016.06.002.

    Article  Google Scholar 

  78. Lundgaard, I., Luzhynskaya, A., Stockley, J.H., Wang, Z., Evans, K.A. Swire, M., ... & Káradóttir, R.T. (2013). Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biology, 11, e1001743. https://doi.org/10.1371/journal.pbio.1001743.

  79. Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cereb Cortex, 14, 647–654. https://doi.org/10.1093/cercor/bhh025.

    Article  Google Scholar 

  80. Mahr, J.B., Csibra, G. (2018). Why do we remember? The communicative function of episodic memory. Behavioral and Brain Sciences, 41, e1. https://doi.org/10.1017/S0140525X17000012.

  81. Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A critical period for social experience–dependent oligodendrocyte maturation and myelination. Sci, 337, 1357–1360. https://doi.org/10.1126/science.1220845.

    Article  Google Scholar 

  82. Manz, E., Lehrer, R., & Schauble, L. (2020). Rethinking the classroom science investigation. Journal Res Science Teach, 57, 1148–1174. https://doi.org/10.1002/tea.21625.

    Article  Google Scholar 

  83. Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13, e1002328. https://doi.org/10.1371/journal.pbio.1002328.

    Article  Google Scholar 

  84. Margonis, F. (1998). The demise of authenticity. Philosophy of Education Archive, 248–257.

  85. Marisca, R., Hoche, T., Agirre, E., Hoodless, L. J., Barkey, W., Auer, F., ... & Czopka, T. (2020). Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat Neurosci, 23, 363–374. https://doi.org/10.1038/s41593-019-0581-2.

  86. Markowitsch, H. J., & Stanilou, A. (2011). Memory, autonoetic consciousness, and the self. Conscious Cognit, 20, 16–39. https://doi.org/10.1016/j.concog.2010.09.005.

    Article  Google Scholar 

  87. McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. (2014). Motor skill learning requires active central myelination. Sci, 346, 318–322. https://doi.org/10.1126/science.1254960.

    Article  Google Scholar 

  88. Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends Cognit Sci, 17, 627–640. https://doi.org/10.1016/j.tics.2013.09.015.

    Article  Google Scholar 

  89. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. J Res Sci Teach, 55, 1053–1075. https://doi.org/10.1002/tea.21459.

    Article  Google Scholar 

  90. Mortimer, E. F., & Wertsch, J. V. (2003). The architecture and dynamics of intersubjectivity in science classrooms. Mind, Culture, and Activity, 10, 230–244. https://doi.org/10.1207/s15327884mca1003_5.

    Article  Google Scholar 

  91. Mount, C. W., & Monje, M. (2017). Wrapped to adapt: Experience-dependent myelination. Neuron, 95, 743–756. https://doi.org/10.1016/j.neuron.2017.07.009.

    Article  Google Scholar 

  92. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlational networks introduced? NeuroImage, 44, 893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036.

    Article  Google Scholar 

  93. Murty, V., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Behav Rev, 70, 46–58. https://doi.org/10.1016/j.neubiorev.2016.07.034.

    Article  Google Scholar 

  94. National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Natl Acad Press.

    Google Scholar 

  95. Nave, K.-A., & Werner, H. B. (2014). Myelination of the nervous system: Mechanisms and functions. Annu Rev Cell Dev Biol, 30, 503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101.

    Article  Google Scholar 

  96. NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.

    Google Scholar 

  97. Northoff, G. (2016). Is the self a higher-order or fundamental function of the brain? The “basis model of self-specificity” and its encoding by the brain’s spontaneous activity. Cogn Neurosci, 7, 203–222. https://doi.org/10.1080/17588928.2015.1111868.

    Article  Google Scholar 

  98. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain—a meta-analysis of imaging studies of the self. NeuroImage, 31, 440–457. https://doi.org/10.1016/j.neuroimage.2005.12.002.

    Article  Google Scholar 

  99. Northoff, G., Qin, P., & Feinberg, T. E. (2011). Brain imaging of the self — conceptual, anatomical and methodological issues. Conscious Cogn, 20, 52–63. https://doi.org/10.1016/j.concog.2010.09.011.

    Article  Google Scholar 

  100. Oancea, A., & Pring, R. (2008). The importance of being thorough: On systematic accumulations of ‘what works’ in education research. J Philos Educ, 42(S1), 15–39. https://doi.org/10.1111/j.1467-9752.2008.00633.x.

    Article  Google Scholar 

  101. O’Loughlin, M. (1992). Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning. J Res Sci Teach, 29, 791–820. https://doi.org/10.1002/tea.3660290805.

    Article  Google Scholar 

  102. Oldham, S., & Fornito, A. (2019). The development of brain network hubs. Dev Cogn Neurosci, 36, 100607. https://doi.org/10.1016/j.dcn.2018.12.005.

    Article  Google Scholar 

  103. Olson, I. R., von der Heide, R. J., Alm, K. H., & Vyas, G. (2015). Development of the uncinate fasciculus: Implications for theory and developmental disorders. Dev Cogn Neurosci, 14, 50–61. https://doi.org/10.1016/j.dcn.2015.06.003.

    Article  Google Scholar 

  104. Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor – an emergent epistemological approach to learning. Science & Education, 14, 535–557. https://doi.org/10.1007/s11191-004-5157-0.

    Article  Google Scholar 

  105. Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Basic Books.

    Google Scholar 

  106. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9, 148–158. https://doi.org/10.1038/nrn2317.

    Article  Google Scholar 

  107. Phillips, D. C. (2019). Evidence of confusion about evidence of causes: Comments on the debate about EBP in education. Educational Research and Evaluation, 25, 7–24. https://doi.org/10.1080/13803611.2019.1617980.

    Article  Google Scholar 

  108. Piolino, P., Hisland, M., Ruffeveille, I., Matuszewski, V., Jambaqué, I., & Eustache, F. (2007). Do school-age children remember or know the personal past? Consciousness and Cognition, 16, 84–101. https://doi.org/10.1016/j.concog.2005.09.010.

    Article  Google Scholar 

  109. Popova, Y. B. (2019). Participatory sense-making in narrative experience. In R. Beach & D. Bloome (Eds.) Languaging relations for transforming the literacy and language arts classroom. New York, NY: Routledge.

  110. Preston, A.R., Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23, R764 R773. https://doi.org/10.1016/j.cub.2013.05.041..

  111. Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180–190. https://doi.org/10.1016/j.tic.2010.01.008.

    Article  Google Scholar 

  112. Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030.

    Article  Google Scholar 

  113. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682. https://doi.org/10.1073/pnas.98.2.676.

    Article  Google Scholar 

  114. Richardson, V. (2003). Constructivist pedagogy. Teachers College Record, 105, 1623–1640.

  115. Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Cambridge University Press.

    Google Scholar 

  116. Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal–subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16, 147–156. https://doi.org/10.1016/j.tics.2012.01.005.

    Article  Google Scholar 

  117. Russ, R. S., & Berland, L. K. (2019). Invented science: A framework for discussing a persistent problem of practice. Journal of the Learning Sciences, 28, 279–301. https://doi.org/10.1080/10508406.2018.1517354.

    Article  Google Scholar 

  118. Schlichting, M. L., & Frankland, P. W. (2017). Memory allocation and integration in rodents and humans. Current Opinion in Behavioral Sciences, 17, 90–98. https://doi.org/10.1016/j.cobeha.2017.07.013.

    Article  Google Scholar 

  119. Schlichting, M. L., & Preston, A. R. (2015). Memory integration: Neural mechanisms and implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8. https://doi.org/10.1016/j.cobeha.2014.07.005.

    Article  Google Scholar 

  120. Schlichting, M. L., & Preston, A. R. (2016). Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 134, 91–106. https://doi.org/10.1016/j.nlm.2015.11.005.

    Article  Google Scholar 

  121. Schmitz, T. W., & Johnson, S. C. (2007). Relevance to self: A brief review and framework of neural systems underlying appraisal. Neuroscience & Biobehavioral Reviews, 31, 585–596. https://doi.org/10.1016/j.neubiorev.2006.12.003.

    Article  Google Scholar 

  122. Scriven, M. (2008). A summative evaluation of RCT methodology: & An alternative approach to causal research. Journal of MultiDisciplinary Evaluation, 5(11), 24.

  123. Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27, 4–13. https://doi.org/10.3102/0013189X027002004.

    Article  Google Scholar 

  124. Simmonds, D., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging (DTI) study. NeuroImage, 92, 356–368. https://doi.org/10.1016/j.neuroimage.2013.12.044.

    Article  Google Scholar 

  125. Simpson, D. (2017). Pedagogy and the second person. In M. A. Peters & J. Stickney (Eds.), A Companion to Wittgenstein on Education. (pp. 453–465). Springer.

    Chapter  Google Scholar 

  126. Smith, R. (2017). A neuro-cognitive defense of the unified self. Conscious Cogn, 48, 21–39. https://doi.org/10.1016/j.concog.2016.10.007.

    Article  Google Scholar 

  127. Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. J Neurosci, 35, 15746–15751. https://doi.org/10.1523/JNEUROSCI.2767-15.2015.

    Article  Google Scholar 

  128. Spitzer, S. O., Sitnikov, S., Kamen, Y., Evans, K. A., Kronenberg-Versteeg, D., Dietmann, S., ... & Káradóttir, R. T. (2019). Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron, 101, 459–471. https://doi.org/10.1016/j.neuron.2018.12.020.

    Article  Google Scholar 

  129. Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. J Cogn Neurosci, 21, 489–510. https://doi.org/10.1162/jocn.2008.21029.

    Article  Google Scholar 

  130. Squire, L. R., & Wixted, J. T. (2011). The cognitive neuroscience of human memory since HM. Annu Rev Neurosci, 34, 259–288. https://doi.org/10.1146/annurev-neuro-061010-113720.

    Article  Google Scholar 

  131. Stone, L. D., Underwood, C., & Hotchkiss, J. (2012). The relational habitus: Intersubjective processes in learning settings. Hum Devs, 55, 65–91. https://doi.org/10.1159/000337150.

    Article  Google Scholar 

  132. Strevens, M. (2020). The Knowledge Machine: How Irrationality Created Modern Science. Liveright Publishing Corporation.

    Google Scholar 

  133. Sui, J., & Humphreys, G. W. (2015). The integrative self: How self-reference integrates perception and memory. Trends Cogn Sci, 19, 719–728. https://doi.org/10.1016/j.tics.2015.08.015.

    Article  Google Scholar 

  134. Taber, K. S. (2016). Constructivism in education: Interpretations and criticisms from science education. In E. Railean (Ed.), Handbook of Applied Learning Theory and Design in Modern Education (pp. 116–144). Hershey, PA: IGI Global.

  135. Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., ... & Haber, S. N. (2019). A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. eLife, 8, e43761. https://doi.org/10.7554/eLife.43761.

    Article  Google Scholar 

  136. Thomas, G. (2016). After the gold rush: Questioning the “gold standard” and reappraising the status of experiment and randomized controlled trials in education. Harv Educ Rev, 86, 390–411. https://doi.org/10.17763/1943-5045-86.3.390.

    Article  Google Scholar 

  137. Tomasello, M. (1999). The cultural origins of human cognition. Harvard University Press.

    Google Scholar 

  138. Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behav Brain Sci, 16, 495–511. https://doi.org/10.1017/S0140525X0003123X.

    Article  Google Scholar 

  139. van den Heuvel, M. P., & Sporns, O. (2013a). An anatomical substrate for integration among functional networks in human cortex. J Neurosci, 33, 14489–14500. https://doi.org/10.1523/JNEUROSCI.2128-13.2013.

    Article  Google Scholar 

  140. van den Heuvel, M. P., & Sporns, O. (2013b). Network hubs in the human brain. Trends Cogn Sci, 17, 683–696. https://doi.org/10.1016/j.tics.2013.09.012.

    Article  Google Scholar 

  141. van Kesteren, M. T. R., Beul, S. F., Takashima, A., Henson, R. N., Ruiter, D. J., & Fernández, G. (2013). Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent. Neuropsychologia, 51, 2352–2359. https://doi.org/10.1016/j.neuropsychologia.2013.05.027.

    Article  Google Scholar 

  142. van Kesteren, M. T. R., Fernández, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Nat Acad Sci, 107, 7550–7555. https://doi.org/10.1073/pnas.0914892107.

    Article  Google Scholar 

  143. van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends Neurosci, 35, 211–219. https://doi.org/10.1016/j.tins.2012.02.001.

    Article  Google Scholar 

  144. Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015). Default mode dynamics for global functional integration. J Neurosci, 35, 15254–15262. https://doi.org/10.1523/JNEUROSCI.2135-15.2015.

    Article  Google Scholar 

  145. von der Heide, R. J., Skipper, L. M., Klobusicky, E., & Olson, I. R. (2013). Dissecting the uncinate fasciculus: disorders, controversies, and a hypothesis. Brain, 136, 1692–1707. https://doi.org/10.1093/brain/awt094.

    Article  Google Scholar 

  146. von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick (Ed.), The Invented Reality. (pp. 17–40). Norton.

    Google Scholar 

  147. von Glasersfeld, E. (1991). An exposition of constructivism: Why some like it radical. Facets of Systems Science. (pp. 229–238). Springer.

    Chapter  Google Scholar 

  148. von Glasersfeld, E. (1998). Cognition, construction of knowledge, and teaching. Constructivism in science education. (pp. 11–30). Springer.

    Chapter  Google Scholar 

  149. Wagner, P. A., & Fair, F. K. (2021). Education for knowing: Theories of Knowledge for Effective Student Building. Rowman & Littlefield.

    Google Scholar 

  150. Whitaker, K. J., Vértes, P. E., Romero-Garcia, R., Váša, F., Moutoussis, M., Prabhu, G., ... & Bullmore, E. T. (2016). Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci, 113, 9105–9110. https://doi.org/10.1073/pnas.1601745113.

    Article  Google Scholar 

  151. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science & Education, 92, 941–967. https://doi.org/10.1002/sce.20259.

  152. Wixted, J. T., & Squire, L. R. (2011). The medial temporal lobe and the attributes of memory. Trends Cogn Sci, 15, 210–217. https://doi.org/10.1016/j.tics.2011.03.005.

    Article  Google Scholar 

  153. Wrigley, T. (2018). The power of ‘evidence’: reliable science or a set of blunt tools? Br Educ Res J, 44, 359–376. https://doi.org/10.1002/berj.3338.

    Article  Google Scholar 

  154. Wrigley, T., & McCusker, S. (2019). Evidence-based teaching: A simple view of “science.” Educ Res Eval, 25, 110–126. https://doi.org/10.1080/13803611.2019.1617992.

  155. Zahavi, D. (2008). Simulation, projection and empathy. Conscious Cogn, 17, 514–522. https://doi.org/10.1016/j.concog.2008.03.010.

    Article  Google Scholar 

  156. Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75, 168–179. https://doi.org/10.1016/j.neuron.2012.05.010.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen D. Larison.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larison, K.D. On Beyond Constructivism. Sci & Educ (2021). https://doi.org/10.1007/s11191-021-00237-8

Download citation

Keywords

  • Intersubjectivity
  • The self
  • Constructivism
  • Brain development
  • Narrative frameworks